Yu Zeping, Wang Mengxian, Li Junqiao, Xu Hong, Zhang Wenli, Xing Fei, Li Jian, Yang Jiaojiao, Xiong Yan
Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
Small. 2025 Mar;21(9):e2410710. doi: 10.1002/smll.202410710. Epub 2025 Jan 19.
Due to the inherent aseptic and enclosed characteristics of joint cavity, septic arthritis (SA) almost inevitably leads to intractable infections and rapidly progressing complex pathological environments. Presently, SA faces not only the deficient effectiveness of the gold-standard systemic antibiotic therapy but also the scarcity of effective localized targeted approaches and standardized animal models. Herein, an ingenious multifunctional nanosystem is designed, which involves the methylation of hyaluronic acid (HA), copolymerization with DEGDA, loading with vancomycin (VAN), and then coating with fused macrophage-platelet membrane (denoted as FM@HA@VAN). Upon intra-articular administration, FM@HA@VAN nanoparticles exhibit sustained retention and selectively targeting to infected sites, leveraging macrophage-mediated inflammation homing and platelet-directed bacteria targeting. The acidic microenvironment triggers responsive release of vancomycin, leading to potent bactericidal effects. Subsequently, the exposed HA@VAN nanoparticles are efficiently internalized by activated macrophages, releasing HA to alleviate oxidative stress and achieve chondroprotection by inhibiting pro-inflammatory cytokines, neutralizing ROS and upregulating macrophage M2 polarization. In vivo model and experiments confirm the efficacy of this dual-targeting antibacterial approach, demonstrating its precision in eradicating bacterial infections and alleviating associated pathological processes, including synovial hyperplasia and cartilage erosion. The dual-targeting therapeutic nanosystem, coordinated with fused-membranes, holds promise for enhancing the treatment efficacy of SA.
由于关节腔固有的无菌和封闭特性,化脓性关节炎(SA)几乎不可避免地会导致难治性感染和迅速进展的复杂病理环境。目前,SA不仅面临金标准全身抗生素治疗效果不佳的问题,还面临有效局部靶向方法和标准化动物模型稀缺的问题。在此,设计了一种巧妙的多功能纳米系统,该系统涉及透明质酸(HA)的甲基化、与二乙二醇二丙烯酸酯(DEGDA)共聚、负载万古霉素(VAN),然后用融合的巨噬细胞-血小板膜包被(表示为FM@HA@VAN)。关节腔内给药后,FM@HA@VAN纳米颗粒表现出持续滞留并选择性靶向感染部位,利用巨噬细胞介导的炎症归巢和血小板导向的细菌靶向作用。酸性微环境触发万古霉素的响应性释放,从而产生强大的杀菌作用。随后,暴露的HA@VAN纳米颗粒被活化的巨噬细胞有效内化,释放HA以减轻氧化应激,并通过抑制促炎细胞因子、中和活性氧和上调巨噬细胞M2极化来实现软骨保护。体内模型和实验证实了这种双靶向抗菌方法的有效性,证明了其在根除细菌感染和减轻相关病理过程(包括滑膜增生和软骨侵蚀)方面的精确性。这种与融合膜协同的双靶向治疗纳米系统有望提高SA的治疗效果。