Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA.
Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
Cell. 2018 Jul 12;174(2):338-349.e20. doi: 10.1016/j.cell.2018.05.042. Epub 2018 Jun 21.
Macromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation.
大分子拥挤对反应速率和细胞内部的物理性质有深远的影响,但调节拥挤的机制还知之甚少。我们开发了遗传编码的多聚体纳米颗粒(GEMs)来剖析这些机制。GEMs 是由荧光蛋白融合而成的同源多聚体支架,自组装成具有明确定义的大小和形状的亮、稳定的颗粒。通过将 GEM 的跟踪与遗传和药理学方法相结合,我们发现 mTORC1 途径可以通过调节核糖体浓度,将粒径≥20nm 的颗粒的有效扩散系数调节 2 倍以上,而对分子≤5nm 的分子的运动没有任何明显影响。这种核糖体浓度的变化影响了体外和体内的相分离。总之,这些结果确立了 mTORC1 在控制细胞质的中尺度生物物理性质和生物分子凝聚方面的作用。