Suppr超能文献

直径50纳米的基因编码多聚纳米颗粒的研发与表征

Development and Characterization of 50 nanometer diameter Genetically Encoded Multimeric Nanoparticles.

作者信息

Hernandez Cindy M, Duran-Chaparro David C, van Eeuwen Trevor, Rout Michael P, Holt Liam J

机构信息

Institute for Systems Genetics, New York University School of Medicine, New York, 435 E 30th Street NY 10016, United States.

Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY10065.

出版信息

bioRxiv. 2024 Jul 7:2024.07.05.602291. doi: 10.1101/2024.07.05.602291.

Abstract

The mechanisms that regulate the physical properties of the cell interior remain poorly understood, especially at the mesoscale (10nm-100nm). Changes in these properties have been suggested to be crucial for both normal physiology and disease. Many crucial macromolecules and molecular assemblies such as ribosomes, RNA polymerase, and biomolecular condensates span the mesoscale size range. Therefore, we need better tools to study the cellular environment at this scale. A recent approach has been to use genetically encoded multimeric nanoparticles (GEMs), which consist of self-assembling scaffold proteins fused to fluorescent tags. After translation of the fusion protein, the monomers self-assemble into bright and stable nanoparticles of defined geometry that can be visualized by fluorescence microscopy. Physical properties of the cell can then be inferred through analysis of the motion of these particles, an approach called nanorheology. Previously, 40nm-GEMs elucidated TORC1 kinase as a regulator of cytoplasmic crowding. However, extremely sensitive microscopes were required. Here, we describe the development and characterization of a 50 nm diameter GEM that is brighter and probes a larger length scale. 50nm-GEMs will make high-throughput nanorheology accessible to a broader range of researchers and reveal new insights into the biophysical properties of cells.

摘要

调节细胞内部物理性质的机制仍知之甚少,尤其是在中尺度(10纳米至100纳米)范围内。这些性质的变化被认为对正常生理和疾病都至关重要。许多关键的大分子和分子聚集体,如核糖体、RNA聚合酶和生物分子凝聚物,都处于中尺度大小范围内。因此,我们需要更好的工具来研究这个尺度下的细胞环境。最近的一种方法是使用基因编码的多聚体纳米颗粒(GEMs),它由与荧光标签融合的自组装支架蛋白组成。融合蛋白翻译后,单体自组装成具有确定几何形状的明亮且稳定的纳米颗粒,可通过荧光显微镜观察到。然后可以通过分析这些颗粒的运动来推断细胞的物理性质,这种方法称为纳米流变学。此前,40纳米的GEMs阐明了TORC1激酶是细胞质拥挤的调节因子。然而,这需要极其灵敏的显微镜。在这里,我们描述了一种直径为50纳米的GEM的开发和表征,它更亮且能探测更大的长度尺度。50纳米的GEMs将使更广泛的研究人员能够进行高通量纳米流变学研究,并揭示细胞生物物理性质的新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验