Bierhorst Peter
Information Technology Laboratory, National Institute of Standards and Technology, Boulder, CO 80305.
J Phys A Math Theor. 2016;49(21). doi: 10.1088/1751-8113/49/21/215301.
In the well-studied (2, 2, 2) Bell experiment consisting of two parties, two measurement settings per party, and two possible outcomes per setting, it is known that if the experiment obeys no-signaling constraints, then the set of admissible experimental probability distributions is fully characterized as the convex hull of 24 distributions: 8 Popescu-Rohrlich (PR) boxes and 16 local deterministic distributions. Furthermore, it turns out that in the (2, 2, 2) case, any nonlocal nonsignaling distribution can always be uniquely expressed as a convex combination of exactly one PR box and (up to) eight local deterministic distributions. In this representation each PR box will always occur only with a fixed set of eight local deterministic distributions with which it is affiliated. In this paper, we derive multiple practical applications of this result: we demonstrate an analytical proof that the minimum detection efficiency for which nonlocality can be observed is even for theories constrained only by the no-signaling principle, and we develop new algorithms that speed the calculation of important statistical functions of Bell test data. Finally, we enumerate the vertices of the no-signaling polytope for the (2, , 2) "chained Bell" scenario and find that similar decomposition results are possible in this general case. Here, our results allow us to prove the optimality of a bound, derived in Barrett . [1], on the proportion of local theories in a local/nonlocal mixture that can be inferred from the experimental violation of a chained Bell inequality.
在经过充分研究的由两方组成、各方有两种测量设置且每种设置有两种可能结果的(2, 2, 2)贝尔实验中,已知如果该实验遵守无信号约束,那么可允许的实验概率分布集完全由24种分布的凸包来表征:8个波佩斯库 - 罗尔利希(PR)盒和16个局部确定性分布。此外,在(2, 2, 2)情形下,任何非局部无信号分布总能唯一地表示为恰好一个PR盒与(至多)八个局部确定性分布的凸组合。在这种表示中,每个PR盒总是仅与一组固定的八个与其相关联的局部确定性分布一起出现。在本文中,我们推导了这一结果的多个实际应用:我们给出一个解析证明,即对于仅受无信号原理约束的理论,能够观测到非局部性的最小检测效率为 ,并且我们开发了新算法,这些算法加快了贝尔测试数据重要统计函数的计算。最后,我们列举了(2, , 2)“链式贝尔”情形下无信号多面体的顶点,并发现在此一般情形下类似的分解结果是可能的。在此,我们的结果使我们能够证明巴雷特[1]中推导的关于从链式贝尔不等式的实验违背中可推断出的局部/非局部混合中局部理论比例的一个界的最优性。