Suppr超能文献

用于诊断与肺动脉高压相关的先天性心脏病的非侵入性机器学习方法。

Non-invasive ML methods for diagnosis of congenital heart disease associated with pulmonary arterial hypertension.

作者信息

Gao Yuyang, Ma Pengyue, Pan Jiahua, Yang Hongbo, Guo Tao, Wang Weilian

机构信息

Country School of Information Science and Engineering, Yunnan University, Kunming, China.

Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China.

出版信息

Front Physiol. 2025 Jan 3;15:1502725. doi: 10.3389/fphys.2024.1502725. eCollection 2024.

Abstract

OBJECTIVE

Congenital heart disease with pulmonary arterial hypertension (CHD-PAH), caused by CHD, is associated with high clinical mortality. Hence, timely diagnosis is imperative for treatment.

APPROACH

Two non-invasive diagnosis algorithms of CHD-PAH were put forward in this review, which were direct three-divided and two-stage classification models. Pre-processing in both algorithms focuses on segmentation of heart sounds into discrete cardiac cycles. Both the dual-threshold and Bi-LSTM (Bi-directional Long Short-Term Memory) methods demonstrate efficacy. In the feature extraction phase, the direct three-divided model integrate time-, frequency-, and energy-domain features with deep learning features. While the two-stage classification model sequentially extracts sub-band envelopes and short-time energy of cardiac cycle. In the classification phase, considering the lack of CHD-PAH data, ensemble learning was widely used.

MAIN RESULTS

An accuracy of 88.61% was achieved with direct three-divided model and 90.9% with two-stage classification model.

SIGNIFICANCE

By analyzing and discussing these algorithms, future research directions of CHD-PAH assisted diagnosis were discussed. It is hoped that it will provide insight into prediction of CHD-PAH. Thus saving people from death due to untimely assistance.

摘要

目的

由先天性心脏病(CHD)引起的先天性心脏病合并肺动脉高压(CHD-PAH)与高临床死亡率相关。因此,及时诊断对于治疗至关重要。

方法

本综述提出了两种CHD-PAH的非侵入性诊断算法,即直接三分法和两阶段分类模型。两种算法中的预处理都侧重于将心音分割成离散的心搏周期。双阈值法和双向长短期记忆(Bi-LSTM)方法均显示出有效性。在特征提取阶段,直接三分法模型将时域、频域和能量域特征与深度学习特征相结合。而两阶段分类模型则依次提取心搏周期的子带包络和短时能量。在分类阶段,考虑到CHD-PAH数据的缺乏,广泛使用了集成学习。

主要结果

直接三分法模型的准确率为88.61%,两阶段分类模型的准确率为90.9%。

意义

通过对这些算法的分析和讨论,探讨了CHD-PAH辅助诊断的未来研究方向。希望它能为CHD-PAH的预测提供见解。从而使人们免于因援助不及时而死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d33/11739355/70218675ff05/fphys-15-1502725-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验