Suppr超能文献

解锁生物复杂性:机器学习在整合多组学中的作用。

Unlocking biological complexity: the role of machine learning in integrative multi-omics.

作者信息

Kumar Ravindra, Ruhel Rajrani, van Wijnen Andre J

机构信息

Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, United States.

Department of Developmental Biology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, United States.

出版信息

Acad Biol. 2024;2(4). doi: 10.20935/acadbiol7428. Epub 2024 Nov 27.

Abstract

The increasing complexity of biological systems demands advanced analytical approaches to decode the underlying mechanisms of health and disease. Integrative multi-omics approaches use multi-layered datasets such as genomic, transcriptomic, proteomic, and metabolomic data to understand biological processes much more comprehensively compared to the single-omics analysis and to provide a comprehensive view of cellular and molecular processes. However, these integrative approaches have their own computational and analytical challenges due to the large volume and nature of multi-omics data. Machine learning has emerged as a powerful tool to help and resolve these challenges. It offers sophisticated algorithms that can identify and discover hidden patterns and provide insights into complex biological networks. By integrating machine learning in multi-omics, we can enhance our understanding of drug discovery, disease, pathway, and network analysis. Machine learning and ensemble methods allow researchers to model nonlinear relationships and manage high-dimensional data, improving the precision of predictions. This approach paves the way for personalized medicine by identifying unique molecular signatures for individual patients, which can provide valuable insights into treatment planning and support more effective treatment. As machine learning continues to evolve, its role in multi-omics analysis will be pivotal in advancing our ability to interpret biological complexity and translate findings into clinical applications.

摘要

生物系统日益复杂,这就需要先进的分析方法来解读健康与疾病的潜在机制。与单组学分析相比,整合多组学方法利用基因组、转录组、蛋白质组和代谢组等多层数据集,能更全面地理解生物过程,并提供细胞和分子过程的全景视图。然而,由于多组学数据的海量性和特性,这些整合方法存在自身的计算和分析挑战。机器学习已成为帮助解决这些挑战的强大工具。它提供了复杂的算法,能够识别和发现隐藏模式,并深入了解复杂的生物网络。通过将机器学习整合到多组学中,我们可以增强对药物发现、疾病、通路和网络分析的理解。机器学习和集成方法使研究人员能够对非线性关系进行建模并处理高维数据,提高预测的准确性。这种方法通过为个体患者识别独特的分子特征,为个性化医疗铺平了道路,这可为治疗规划提供有价值的见解,并支持更有效的治疗。随着机器学习的不断发展,其在多组学分析中的作用对于提升我们解读生物复杂性并将研究结果转化为临床应用的能力至关重要。

相似文献

3
Computational approaches for network-based integrative multi-omics analysis.基于网络的整合多组学分析的计算方法
Front Mol Biosci. 2022 Nov 14;9:967205. doi: 10.3389/fmolb.2022.967205. eCollection 2022.
9
Machine learning: its challenges and opportunities in plant system biology.机器学习:在植物系统生物学中的挑战与机遇。
Appl Microbiol Biotechnol. 2022 May;106(9-10):3507-3530. doi: 10.1007/s00253-022-11963-6. Epub 2022 May 16.

本文引用的文献

1
Multi Omics Applications in Biological Systems.生物系统中的多组学应用
Curr Issues Mol Biol. 2024 Jun 11;46(6):5777-5793. doi: 10.3390/cimb46060345.
9
Multi-modality machine learning predicting Parkinson's disease.多模态机器学习预测帕金森病。
NPJ Parkinsons Dis. 2022 Apr 1;8(1):35. doi: 10.1038/s41531-022-00288-w.
10
Early-Stage Alzheimer's Disease Prediction Using Machine Learning Models.使用机器学习模型预测早期阿尔茨海默病。
Front Public Health. 2022 Mar 3;10:853294. doi: 10.3389/fpubh.2022.853294. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验