Suppr超能文献

野外自监督预训练赋予医学图像变换器图像采集鲁棒性:在肺癌分割中的应用

Self-supervised pretraining in the wild imparts image acquisition robustness to medical image transformers: an application to lung cancer segmentation.

作者信息

Jiang Jue, Veeraraghavan Harini

机构信息

Memorial Sloan Kettering Cancer Center.

出版信息

Proc Mach Learn Res. 2024 Jul;250:708-721.

Abstract

Self-supervised learning (SSL) is an approach to pretrain models with unlabeled datasets and extract useful feature representations such that these models can be easily fine-tuned for various downstream tasks. Self-pretraining applies SSL on curated task-specific datasets without using task-specific labels. Increasing availability of public data repositories has now made it possible to utilize diverse and large, task unrelated datasets to pretrain models in the "wild" using SSL. However, the benefit of such wild-pretraining over self-pretraining has not been studied in the context of medical image analysis. Hence, we analyzed transformers (Swin and ViT) and a convolutional neural network created using wild- and self-pretraining trained to segment lung tumors from 3D-computed tomography (CT) scans in terms of: (a) accuracy, (b) fine-tuning epoch efficiency, and (c) robustness to image acquisition differences (contrast versus non-contrast, slice thickness, and image reconstruction kernels). We also studied feature reuse using centered kernel alignment (CKA) with the Swin networks. Our analysis with two independent testing (public N = 139; internal N = 196) datasets showed that wild-pretrained Swin models significantly outperformed self-pretrained Swin for the various imaging acquisitions. Fine-tuning epoch efficiency was higher for both wild-pretrained Swin and ViT models compared to their self-pretrained counterparts. Feature reuse close to the final encoder layers was lower than in the early layers for wild-pretrained models irrespective of the pretext tasks used in SSL. Models and code will be made available through GitHub upon manuscript acceptance.

摘要

自监督学习(SSL)是一种利用未标记数据集对模型进行预训练并提取有用特征表示的方法,这样这些模型就可以很容易地针对各种下游任务进行微调。自预训练是在经过整理的特定任务数据集上应用SSL,而不使用特定任务的标签。公共数据存储库可用性的提高,现在使得利用多样且大型的、与任务无关的数据集,通过SSL在“自然状态”下对模型进行预训练成为可能。然而,在医学图像分析的背景下,这种自然预训练相对于自预训练的优势尚未得到研究。因此,我们分析了变换器(Swin和ViT)以及一个使用自然预训练和自预训练创建的卷积神经网络,这些模型经过训练,用于从3D计算机断层扫描(CT)图像中分割肺肿瘤,分析指标包括:(a)准确性,(b)微调轮次效率,以及(c)对图像采集差异(对比剂与非对比剂、切片厚度和图像重建内核)的鲁棒性。我们还使用Swin网络通过中心核对齐(CKA)研究了特征重用。我们对两个独立测试(公共数据集N = 139;内部数据集N = 196)数据集的分析表明,对于各种成像采集,自然预训练的Swin模型显著优于自预训练的Swin模型。与自预训练的对应模型相比,自然预训练的Swin和ViT模型的微调轮次效率更高。无论SSL中使用的 pretext 任务如何,自然预训练模型在靠近最终编码器层的特征重用低于早期层。论文被接受后,模型和代码将通过GitHub提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc75/11741178/14ff93f54f87/nihms-2026189-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验