Tsoraev Georgy V, Bukhanko Antonina Y, Mamchur Aleksandra A, Surkov Makar M, Sidorenko Svetlana V, Moldenhauer Marcus, Tseng Hsueh-Wei, Petrovskaya Lada E, Cherepanov Dmitry A, Shelaev Ivan V, Gostev Fedor E, Blinova Anastasia R, Grigorenko Bella L, Yaroshevich Igor A, Nadtochenko Victor A, Budisa Nediljko, Kamenski Piotr, Friedrich Thomas, Maksimov Eugene G
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
Photosynth Res. 2025 Jan 20;163(1):10. doi: 10.1007/s11120-024-01133-2.
The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them. To overcome this, we shifted from classical mutagenesis to the translational introduction of non-canonical amino acid residues into the OCP structure. In this work, we demonstrate that replacing a single meta-hydrogen in tyrosine-201 with a halogen atom (chlorine, bromine, or iodine) leads to targeted modifications in the keto-carotenoid-protein matrix interaction network, both in the dark-adapted state and upon photoactivation. We found that such atomic substitutions allow us to effectively weaken key hydrogen bonds without disrupting protein folding, thereby increasing the yield of OCP photoactivation products. Such genetically encoded chemical modification of individual atoms and their systematic in situ variation in complex protein structures establishes a foundation for transforming OCP into a practical tool for optogenetics and other applications.
橙色类胡萝卜素蛋白(OCP)是一种独特的水溶性光活性蛋白,在调节蓝细菌中光捕获和光保护反应之间的平衡方面起着关键作用。理解OCP光激活机制的挑战源于其嵌入的酮类胡萝卜素初始构型的异质性,在暗适应状态下,它可以与蛋白质C端结构域中的关键氨基酸形成多达两个氢键,以及初级光产物形成的极低量子产率。虽然一系列涉及这些接触点内点突变的实验帮助我们识别了这些挑战,但并未解决它们。为了克服这一问题,我们从经典诱变转向在OCP结构中翻译引入非天然氨基酸残基。在这项工作中,我们证明用卤原子(氯、溴或碘)取代酪氨酸-201中的单个间位氢会导致在暗适应状态和光激活时酮类胡萝卜素-蛋白质基质相互作用网络的靶向修饰。我们发现这种原子取代使我们能够有效削弱关键氢键而不破坏蛋白质折叠,从而提高OCP光激活产物的产率。这种对单个原子的基因编码化学修饰及其在复杂蛋白质结构中的系统原位变化为将OCP转化为光遗传学和其他应用的实用工具奠定了基础。