Suppr超能文献

氢键交替和电荷转移态在橙黄色类胡萝卜素蛋白光激活中的作用。

Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein.

机构信息

Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.

A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.

出版信息

Commun Biol. 2021 May 10;4(1):539. doi: 10.1038/s42003-021-02022-3.

Abstract

Here, we propose a possible photoactivation mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP), suggesting that the reaction involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. Taking advantage of engineering an OCP variant carrying the Y201W mutation, which shows superior spectroscopic and structural properties, it is shown that the presence of Trp201 augments the impact of one critical H-bond between the ketocarotenoid and the protein. This confers an unprecedented homogeneity of the dark-adapted OCP state and substantially increases the yield of the excited photoproduct S*, which is important for the productive photocycle to proceed. A 1.37 Å crystal structure of OCP Y201W combined with femtosecond time-resolved absorption spectroscopy, kinetic analysis, and deconvolution of the spectral intermediates, as well as extensive quantum chemical calculations incorporating the effect of the local electric field, highlighted the role of charge-transfer states during OCP photoconversion.

摘要

在这里,我们提出了一种 35kDa 蓝光触发光受体——橙色类胡萝卜素蛋白 (OCP) 的可能光激活机制,表明该反应涉及到质子化酮类胡萝卜素(氧碳正离子)态的瞬时形成。利用工程改造携带 Y201W 突变的 OCP 变体,该变体显示出优越的光谱和结构特性,表明色氨酸 201 的存在增强了酮类胡萝卜素和蛋白质之间一个关键氢键的影响。这赋予了暗适应 OCP 状态前所未有的均一性,并大大提高了激发光产物 S*的产率,这对于进行有生产力的光循环很重要。OCP Y201W 的 1.37Å 晶体结构结合飞秒时间分辨吸收光谱、动力学分析和光谱中间体的解卷积,以及包含局部电场效应的广泛量子化学计算,突出了电荷转移态在 OCP 光转化过程中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4fb/8110590/2536e66f1a29/42003_2021_2022_Fig1_HTML.jpg

相似文献

6
The photophysics of the orange carotenoid protein, a light-powered molecular switch.
J Phys Chem B. 2012 Mar 1;116(8):2568-74. doi: 10.1021/jp2108329. Epub 2012 Feb 17.
7
Photoactivation mechanism of a carotenoid-based photoreceptor.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6286-6291. doi: 10.1073/pnas.1700956114. Epub 2017 May 30.
9
Raman Optical Activity Reveals Carotenoid Photoactivation Events in the Orange Carotenoid Protein in Solution.
J Am Chem Soc. 2017 Aug 2;139(30):10456-10460. doi: 10.1021/jacs.7b05193. Epub 2017 Jul 21.
10
Fluorescence and Excited-State Conformational Dynamics of the Orange Carotenoid Protein.
J Phys Chem B. 2018 Feb 15;122(6):1792-1800. doi: 10.1021/acs.jpcb.7b09435. Epub 2018 Feb 2.

引用本文的文献

1
Two-Photon-Driven Photoprotection Mechanism in Echinenone-Functionalized Orange Carotenoid Protein.
J Am Chem Soc. 2025 Feb 5;147(5):4100-4110. doi: 10.1021/jacs.4c13341. Epub 2025 Jan 21.
2
Engineering hydrogen bonding at tyrosine-201 in the orange carotenoid protein using halogenated analogues.
Photosynth Res. 2025 Jan 20;163(1):10. doi: 10.1007/s11120-024-01133-2.
3
The Orange Carotenoid Protein Triggers Cyanobacterial Photoprotection by Quenching Bilins via a Structural Switch of Its Carotenoid.
J Am Chem Soc. 2024 Aug 7;146(31):21913-21921. doi: 10.1021/jacs.4c06695. Epub 2024 Jul 26.
6
Is orange carotenoid protein photoactivation a single-photon process?
Biophys Rep (N Y). 2022 Aug 23;2(3):100072. doi: 10.1016/j.bpr.2022.100072. eCollection 2022 Sep 14.
7
Light activation of Orange Carotenoid Protein reveals bicycle-pedal single-bond isomerization.
Nat Commun. 2022 Oct 28;13(1):6420. doi: 10.1038/s41467-022-34137-4.
9
Anti-Stokes fluorescence excitation reveals conformational mobility of the C-phycocyanin chromophores.
Struct Dyn. 2022 Sep 2;9(5):054701. doi: 10.1063/4.0000164. eCollection 2022 Sep.
10
Oligomerization processes limit photoactivation and recovery of the orange carotenoid protein.
Biophys J. 2022 Aug 2;121(15):2849-2872. doi: 10.1016/j.bpj.2022.07.004. Epub 2022 Jul 6.

本文引用的文献

1
Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria†.
Photochem Photobiol Sci. 2020 Jun;19(6):763-775. doi: 10.1039/d0pp00015a. Epub 2020 Oct 27.
3
Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function.
Biochim Biophys Acta Bioenerg. 2020 Jun 1;1861(5-6):148174. doi: 10.1016/j.bbabio.2020.148174. Epub 2020 Feb 12.
4
Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix.
Biochim Biophys Acta Bioenerg. 2020 Feb 1;1861(2):148120. doi: 10.1016/j.bbabio.2019.148120. Epub 2019 Nov 14.
5
Structural peculiarities of keto-carotenoids in water-soluble proteins revealed by simulation of linear absorption.
Phys Chem Chem Phys. 2019 Nov 27;21(46):25707-25719. doi: 10.1039/c9cp04508b.
6
Changing Color for Photoprotection: The Orange Carotenoid Protein.
Trends Plant Sci. 2020 Jan;25(1):92-104. doi: 10.1016/j.tplants.2019.09.013. Epub 2019 Nov 1.
7
How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein.
Phys Chem Chem Phys. 2019 Oct 24;21(41):23187-23197. doi: 10.1039/c9cp03574e.
8
Carotenoids as natural functional pigments.
J Nat Med. 2020 Jan;74(1):1-16. doi: 10.1007/s11418-019-01364-x. Epub 2019 Oct 1.
9
ωB2PLYP and ωB2GPPLYP: The First Two Double-Hybrid Density Functionals with Long-Range Correction Optimized for Excitation Energies.
J Chem Theory Comput. 2019 Sep 10;15(9):4735-4744. doi: 10.1021/acs.jctc.9b00013. Epub 2019 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验