Moldenhauer Marcus, Sluchanko Nikolai N, Buhrke David, Zlenko Dmitry V, Tavraz Neslihan N, Schmitt Franz-Josef, Hildebrandt Peter, Maksimov Eugene G, Friedrich Thomas
Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russian Federation, 119071.
Photosynth Res. 2017 Sep;133(1-3):327-341. doi: 10.1007/s11120-017-0353-3. Epub 2017 Feb 17.
The photoswitchable orange carotenoid protein (OCP) is indispensable for cyanobacterial photoprotection by quenching phycobilisome fluorescence upon photoconversion from the orange OCP to the red OCP form. Cyanobacterial genomes frequently harbor, besides genes for orange carotenoid proteins (OCPs), several genes encoding homologs of OCP's N- or C-terminal domains (NTD, CTD). Unlike the well-studied NTD homologs, called Red Carotenoid Proteins (RCPs), the role of CTD homologs remains elusive. We show how OCP can be reassembled from its functional domains. Expression of Synechocystis OCP-CTD in carotenoid-producing Escherichia coli yielded violet-colored proteins, which, upon mixing with the RCP-apoprotein, produced an orange-like photoswitchable form that further photoconverted into a species that quenches phycobilisome fluorescence and is spectroscopically indistinguishable from RCP, thus demonstrating a unique carotenoid shuttle mechanism. Spontaneous carotenoid transfer also occurs between canthaxanthin-coordinating OCP-CTD and the OCP apoprotein resulting in formation of photoactive OCP. The OCP-CTD itself is a novel, dimeric carotenoid-binding protein, which can coordinate canthaxanthin and zeaxanthin, effectively quenches singlet oxygen and interacts with the Fluorescence Recovery Protein. These findings assign physiological roles to the multitude of CTD homologs in cyanobacteria and explain the evolutionary process of OCP formation.
可光开关橙色类胡萝卜素蛋白(OCP)对于蓝藻的光保护至关重要,它在从橙色OCP光转化为红色OCP形式时通过淬灭藻胆体荧光来实现这一功能。除了橙色类胡萝卜素蛋白(OCP)的基因外,蓝藻基因组中还经常含有几个编码OCP N端或C端结构域(NTD、CTD)同源物的基因。与研究充分的NTD同源物(称为红色类胡萝卜素蛋白,RCPs)不同,CTD同源物的作用仍然不明。我们展示了OCP如何从其功能结构域重新组装。在产类胡萝卜素的大肠杆菌中表达集胞藻OCP-CTD产生了紫色蛋白,该蛋白与RCP脱辅基蛋白混合后,产生了一种类似橙色的可光开关形式,进一步光转化为一种淬灭藻胆体荧光且在光谱上与RCP无法区分的物质,从而证明了一种独特的类胡萝卜素穿梭机制。在虾青素配位的OCP-CTD和OCP脱辅基蛋白之间也会自发发生类胡萝卜素转移,导致形成光活性OCP。OCP-CTD本身是一种新型的二聚体类胡萝卜素结合蛋白,它可以配位虾青素和玉米黄质,有效淬灭单线态氧并与荧光恢复蛋白相互作用。这些发现为蓝藻中众多CTD同源物赋予了生理功能,并解释了OCP形成的进化过程。