Choudhary Rashmi, Ahmad Faheem, Kaya Cengiz, Upadhyay Sudhir Kumar, Muneer Sowbiya, Kumar Vinod, Meena Mukesh, Liu Haitao, Upadhyaya Hrishikesh, Seth Chandra Shekhar
Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India.
Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
J Plant Physiol. 2025 Feb;305:154430. doi: 10.1016/j.jplph.2025.154430. Epub 2025 Jan 9.
As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide). These strategies can expedite crop improvement, and act as powerful tools with high throughput and instant database generation rates. They also provide a platform for interpreting intricate, systematic signalling pathways and knowing how different environmental stimuli cause phenotypic responses at cellular and molecular level by changing the expression of stress-responsive genes like RAB18, KIN1, RD29B, OsCIPK03, OsSTL, SIAGL, bZIP, SnRK, ABF. This review discusses various case studies that exemplify the successful implementation of these omics tools to enhance stress tolerance in plants. Finally, it highlights challenges and future prospects of utilizing these approaches in combating stress, emphasizing the need for interdisciplinary collaborations and bio-technological advancements for sustainable agriculture and food security.
随着我们的星球面临日益严峻的环境挑战,如生物压力、非生物胁迫和气候变化,了解作物植物应激反应背后的复杂机制至关重要。在过去几年中,蛋白质组学、转录组学和基因组学技术(如液相色谱 - 质谱联用(LC-MS)、离子阱质谱(IT-MS)、基质辅助激光解吸电离质谱(MALDI-MS)、差异凝胶电泳(DIGE)、表达序列标签(ESTs)、基因表达连续分析(SAGE)、全基因组测序(WGS)、全基因组关联研究(GWAS)、基因型测序(GBS)、双向聚丙烯酰胺凝胶电泳(2D-PAGE)、成簇规律间隔短回文重复序列 - 相关蛋白系统(CRISPR-Cas)、cDNA扩增片段长度多态性分析(cDNA-AFLP)、高通量测序(HLS)、高通量蛋白质组学(HRPF)、大规模平行信号测序系统(MPSS)、帽分析基因表达(CAGE)、标记辅助选择(MAS)、等电聚焦(IEF)、多维蛋白质鉴定技术(MudPIT)、选择反应监测/多反应监测(SRM/MRM)、数据非依赖采集质谱(SWATH-MS)、电喷雾电离(ESI))的整合显著增强了我们理解参与平衡生态系统/生态应激适应的分子途径和调控网络的能力。本综述全面概述了当前利用这些多组学方法(包括代谢组学、离子组学)应对非生物胁迫(盐度、温度(冷害/冻害/低温/高温)、洪涝(缺氧)、干旱、重金属/类金属)、生物胁迫(病原体如真菌、细菌、病毒、害虫和昆虫(蚜虫、毛虫、蛾、螨、线虫))以及气候变化胁迫(臭氧、紫外线辐射、温室气体、二氧化碳)的研究。这些策略可以加速作物改良,并作为具有高通量和即时数据库生成率的强大工具。它们还提供了一个平台,用于解读复杂的系统信号通路,并了解不同的环境刺激如何通过改变应激反应基因(如RAB18、KIN1、RD29B、OsCIPK03、OsSTL、SIAGL、bZIP、SnRK、ABF)的表达在细胞和分子水平上引起表型反应。本综述讨论了各种案例研究,这些研究例证了这些组学工具在增强植物胁迫耐受性方面的成功应用。最后,它强调了利用这些方法应对胁迫的挑战和未来前景,强调了跨学科合作和生物技术进步对于可持续农业和粮食安全的必要性。