Acharki Siham, Raza Ali, Vishwakarma Dinesh Kumar, Amharref Mina, Bernoussi Abdes Samed, Singh Sudhir Kumar, Al-Ansari Nadhir, Dewidar Ahmed Z, Al-Othman Ahmed A, Mattar Mohamed A
Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, 93000, Tetouan, Morocco.
Center for Remote Sensing Applications (CRSA), Mohammed VI Polytechnic University (UM6P), 43150, Benguerir, Morocco.
Sci Rep. 2025 Jan 20;15(1):2542. doi: 10.1038/s41598-024-83859-6.
Improving the accuracy of reference evapotranspiration (RET) estimation is essential for effective water resource management, irrigation planning, and climate change assessments in agricultural systems. The FAO-56 Penman-Monteith (PM-FAO56) model, a widely endorsed approach for RET estimation, often encounters limitations due to the lack of complete meteorological data. This study evaluates the performance of eight empirical models and four machine learning (ML) models, along with their hybrid counterparts, in estimating daily RET within the Gharb and Loukkos irrigated perimeters in Morocco. The ML models examined include Random Forest (RF), M5 Pruned (M5P), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), with hybrid combinations of RF-M5P, RF-XGBoost, RF-LightGBM, and XGBoost-LightGBM. Six input combinations were created, utilizing T, T, RH, R, and U, with the PM-FAO56 model serving as the benchmark. Model performance was assessed using four statistical indicators: Kling-Gupta efficiency index (KGE), coefficient of determination (R), mean squared error (RMSE), and relative root squared error (RRSE). Results indicate that the Valiantzas 2013 (VAL2013b) model outperformed other empirical models across all stations, achieving high KGE and R values (0.95-0.97) and low RMSE (0.32-0.35 mm/day) and RRSE (8.14-10.30%). The XGBoost-LightGBM and RF-LightGBM hybrid models exhibited the highest accuracy (average RMSE of 0.015-0.097 mm/day), underscoring the potential of hybrid ML models for RET estimation in subhumid and semi-arid regions, thereby enhancing water resource management and irrigation scheduling.
提高参考作物蒸散量(RET)估算的准确性对于农业系统中有效的水资源管理、灌溉规划和气候变化评估至关重要。联合国粮食及农业组织(FAO)-56彭曼-蒙特斯(PM-FAO56)模型是一种广泛认可的RET估算方法,但由于缺乏完整的气象数据,该模型常常受到限制。本研究评估了八个经验模型、四个机器学习(ML)模型及其混合模型在摩洛哥加布和卢科斯灌溉区域内估算每日RET的性能。所考察的ML模型包括随机森林(RF)、M5修剪树(M5P)、极端梯度提升(XGBoost)和轻量级梯度提升机(LightGBM),以及RF-M5P、RF-XGBoost、RF-LightGBM和XGBoost-LightGBM的混合组合。利用气温(T)、相对湿度(RH)、辐射(R)和风速(U)创建了六种输入组合,并以PM-FAO56模型作为基准。使用四个统计指标评估模型性能:克林-古普塔效率指数(KGE)、决定系数(R)、均方根误差(RMSE)和相对均方根误差(RRSE)。结果表明,在所有站点中,瓦利安扎斯2013(VAL2013b)模型的表现优于其他经验模型,获得了较高的KGE和R值(0.95 - 0.97)以及较低的RMSE(0.32 - 0.35毫米/天)和RRSE(8.14 - 10.30%)。XGBoost-LightGBM和RF-LightGBM混合模型表现出最高的准确性(平均RMSE为0.015 - 0.097毫米/天),这突出了混合ML模型在亚湿润和半干旱地区进行RET估算的潜力,从而改善水资源管理和灌溉调度。