Suppr超能文献

利用高分辨率体内共聚焦显微镜,通过卷积神经网络实现口腔上皮发育异常和口腔鳞状细胞癌的准确实时诊断。

Convolutional neural networks for accurate real-time diagnosis of oral epithelial dysplasia and oral squamous cell carcinoma using high-resolution in vivo confocal microscopy.

作者信息

Ramani Rishi S, Tan Ivy, Bussau Lindsay, O'Reilly Lorraine A, Silke John, Angel Christopher, Celentano Antonio, Whitehead Lachlan, McCullough Michael, Yap Tami

机构信息

Melbourne Dental School, University of Melbourne, Level 5, 720 Swanston Street, Carlton, Melbourne, VIC, 3053, Australia.

Optiscan Imaging Ltd, Mulgrave, VIC, Australia.

出版信息

Sci Rep. 2025 Jan 20;15(1):2555. doi: 10.1038/s41598-025-86400-5.

Abstract

Oral cancer detection is based on biopsy histopathology, however with digital microscopy imaging technology there is real potential for rapid multi-site imaging and simultaneous diagnostic analysis. Fifty-nine patients with oral mucosal abnormalities were imaged in vivo with a confocal laser endomicroscope using the contrast agents acriflavine and fluorescein for the detection of oral epithelial dysplasia and oral cancer. To analyse the 9168 images frames obtained, three tandem applied pre-trained Inception-V3 convolutional neural network (CNN) models were developed using transfer learning in the PyTorch framework. The first CNN was used to filter for image quality, followed by image specific diagnostic triage models for fluorescein and acriflavine, respectively. Images were categorised based on a histopathological diagnosis into 4 categories: no dysplasia, lichenoid lesions, low-grade dysplasia and high-grade dysplasia/oral squamous cell carcinoma (OSCC). The quality filtering model had an accuracy of 89.5%. The acriflavine diagnostic model performed well for identifying lichenoid (AUC = 0.94) and low-grade dysplasia (AUC = 0.91) but poorly for identifying no dysplasia (AUC = 0.44) or high-grade dysplasia/OSCC (AUC = 0.28). In contrast, the fluorescein diagnostic model had high classification performance for all diagnostic classes (AUC range = 0.90-0.96). These models had a rapid classification speed of less than 1/10th of a second per image. Our study suggests that tandem CNNs can provide highly accurate and rapid real-time diagnostic triage for in vivo assessment of high-risk oral mucosal disease.

摘要

口腔癌检测基于活检组织病理学,但借助数字显微镜成像技术,快速进行多部位成像和同步诊断分析具有切实潜力。59例口腔黏膜异常患者使用吖啶黄和荧光素作为造影剂,通过共聚焦激光内镜进行体内成像,以检测口腔上皮发育异常和口腔癌。为分析获得的9168个图像帧,在PyTorch框架中利用迁移学习开发了三个串联应用的预训练Inception-V3卷积神经网络(CNN)模型。第一个CNN用于筛选图像质量,随后分别是针对荧光素和吖啶黄的图像特定诊断分类模型。根据组织病理学诊断将图像分为4类:无发育异常、苔藓样病变、低级别发育异常和高级别发育异常/口腔鳞状细胞癌(OSCC)。质量筛选模型的准确率为89.5%。吖啶黄诊断模型在识别苔藓样病变(AUC = 0.94)和低级别发育异常(AUC = 0.91)方面表现良好,但在识别无发育异常(AUC = 0.44)或高级别发育异常/OSCC(AUC = 0.28)方面表现不佳。相比之下,荧光素诊断模型对所有诊断类别都具有较高的分类性能(AUC范围 = 0.90 - 0.96)。这些模型的分类速度很快,每张图像不到十分之一秒。我们的研究表明,串联CNN可为高风险口腔黏膜疾病的体内评估提供高度准确和快速的实时诊断分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29d0/11746977/a0e4d798860a/41598_2025_86400_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验