Suppr超能文献

基于多模态数据的纵向预后模型,用于预测卵圆孔未闭合并阵发性心房颤动患者导管消融术后心房颤动复发情况

Multimodal data-based longitudinal prognostic model for predicting atrial fibrillation recurrence after catheter ablation in patients with patent foramen ovale and paroxysmal atrial fibrillation.

作者信息

Duan Shoupeng, Li Xujun, Wang Jun, Wang Yuhong, Xu Tianyou, Guo Fuding, Wang Yijun, Song Lingpeng, Li Zeyan, Yang Xiaomeng, Shi Xiaoyu, Liu Hengyang, Zhou Liping, Wang Yueyi, Jiang Hong, Yu Lilei

机构信息

Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, No.238 Jiefang Road, Wuhan, Hubei, 430060, People's Republic of China.

Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.

出版信息

Eur J Med Res. 2025 Jan 20;30(1):39. doi: 10.1186/s40001-025-02286-z.

Abstract

BACKGROUND

Clinical studies on atrial fibrillation (AF) recurrence after catheter ablation in patients diagnosed with patent foramen ovale (PFO) and paroxysmal AF (PAF) are scarce. Here, we aimed to develop a nomogram model utilizing multimodal data for the risk stratification of AF recurrence following catheter ablation in individuals diagnosed with PFO and new-onset PAF.

METHODS

Patients with PFO and PAF who underwent catheter ablation at the Renmin Hospital of Wuhan University from January 2018 to June 2020 were consecutively enrolled. The identification of potential risk factors was conducted using the regression method known as least absolute shrinkage and selection operator. Subsequently, multivariate COX regression analysis was conducted to determine the independent risk factors, after which a nomogram scoring system was developed. The nomogram's performance was assessed via various statistical measures, including receiver operating characteristic curve analysis, calibration curve, and decision curve analysis (DCA).

RESULTS

The dataset was partitioned into the development cohort (n = 102) and the validation cohort (n = 43) using a 7:3 ratio. The constructed nomogram included four clinical variables: age, diabetes mellitus, lipoprotein (a), and right ventricular diameter. The area under the curve values of the development and validation cohorts at 1, 2, and 3 years post-catheter ablation were 0.911, 0.812, and 0.786 and 0.842, 0.761, and 0.785, respectively. Additionally, the nomogram demonstrated a significant correlation between the predicted and actual outcomes in the development and validation cohorts, indicating its excellent calibration. Lastly, the DCA findings suggested that the model had notable clinical applicability in predicting the likelihood of AF recurrence within 1, 2, and 3 years after catheter ablation.

CONCLUSION

The incorporation of multimodal data in a nomogram visualization tool facilitates the concise representation of multimodal data, thereby enhancing the comprehension of the clinical status of patients with PFO and PAF following catheter ablation and providing accurate risk stratification at 1, 2, and 3 years post-treatment.

TRIAL REGISTRATION

This trial was registered in the Chinese Clinical Trial Registry. (ChiCTR2300072320).

摘要

背景

关于诊断为卵圆孔未闭(PFO)和阵发性房颤(PAF)的患者经导管消融术后房颤复发的临床研究较少。在此,我们旨在开发一种列线图模型,利用多模态数据对诊断为PFO和新发PAF的个体经导管消融术后房颤复发进行风险分层。

方法

连续纳入2018年1月至2020年6月在武汉大学人民医院接受导管消融的PFO和PAF患者。使用称为最小绝对收缩和选择算子的回归方法确定潜在风险因素。随后,进行多变量COX回归分析以确定独立风险因素,之后开发列线图评分系统。通过各种统计方法评估列线图的性能,包括受试者工作特征曲线分析、校准曲线和决策曲线分析(DCA)。

结果

数据集以7:3的比例分为开发队列(n = 102)和验证队列(n = 43)。构建的列线图包括四个临床变量:年龄、糖尿病、脂蛋白(a)和右心室直径。导管消融术后1年、2年和3年,开发队列和验证队列的曲线下面积值分别为0.911、0.812和0.786以及0.842、0.761和0.785。此外,列线图显示开发队列和验证队列中预测结果与实际结果之间存在显著相关性,表明其校准良好。最后,DCA结果表明该模型在预测导管消融术后1年、2年和3年内房颤复发的可能性方面具有显著的临床适用性。

结论

在列线图可视化工具中纳入多模态数据有助于简洁地呈现多模态数据,从而增强对PFO和PAF患者经导管消融术后临床状况的理解,并在治疗后1年、2年和3年提供准确的风险分层。

试验注册

本试验在中国临床试验注册中心注册。(ChiCTR2300072320)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2516/11748319/d37c32c13291/40001_2025_2286_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验