Suppr超能文献

基于多模态数据驱动的、垂直可视化预测模型,用于对新发高血压患者的动脉粥样硬化性心血管疾病进行早期预测。

Multimodal data-driven, vertical visualization prediction model for early prediction of atherosclerotic cardiovascular disease in patients with new-onset hypertension.

机构信息

Department of Cardiology.

Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu.

出版信息

J Hypertens. 2024 Oct 1;42(10):1757-1768. doi: 10.1097/HJH.0000000000003798. Epub 2024 Jun 17.

Abstract

BACKGROUND

: Hypertension is an important contributing factor to atherosclerotic cardiovascular disease (ASCVD), and multiple risk factors, many of which are implicated in metabolic disorders, contribute to the cause of hypertension. Despite the promise of multimodal data-driven prediction model, no such prediction model was available to predict the risk of ASCVD in Chinese individuals with new-onset hypertension and no history of ASCVD.

METHODS

: A total of 514 patients were randomly allocated to training and verification cohorts (ratio, 7 : 3). We employed Boruta feature selection and conducted multivariate Cox regression analyses to identify variables associated with ASCVD in these patients, which were subsequently utilized for constructing the predictive model. The performance of prediction model was assessed in terms of discriminatory power (C-index), calibration (calibration curves), and clinical utility [decision curve analysis (DCA)].

RESULTS

: This model was derived from four clinical variables: 24-h SBP coefficient of variation, 24-h DBP coefficient of variation, urea nitrogen and the triglyceride-glucose (TyG) index. Bootstrapping with 500 iterations was conducted to adjust the C-indexes were C-index = 0.731, 95% confidence interval (CI) 0.620-0.794 and C-index: 0.799, 95% CI 0.677-0.892 in the training and verification cohorts, respectively. Calibration plots with 500 bootstrapping iterations exhibited a strong correlation between the predicted and observed occurrences of ASCVD in both the training and verification cohorts. DCA analysis confirmed the clinical utility of this prediction model. The constructed nomogram demonstrated significant additional prognostic utility for ASCVD, as evidenced by improvements in the C-index, net reclassification improvement, integrated discrimination improvement, and DCA compared with the overall ASCVD risk assessment.

CONCLUSION

The developed longitudinal prediction model based on multimodal data can effectively predict ASCVD risk in individuals with an initial diagnosis of hypertension.

TRIAL REGISTRATION

: The trial was registered in the Chinese Clinical Trial Registry (ChiCTR2300074392).

摘要

背景

高血压是动脉粥样硬化性心血管疾病(ASCVD)的一个重要致病因素,多种危险因素,其中许多与代谢紊乱有关,导致高血压的发生。尽管多模态数据驱动的预测模型有很大的前景,但对于没有 ASCVD 病史的新发高血压患者,仍然没有这样的预测模型可以预测 ASCVD 的风险。

方法

共纳入 514 例患者,随机分配至训练队列和验证队列(比例为 7:3)。我们采用 Boruta 特征选择和多变量 Cox 回归分析来识别与这些患者 ASCVD 相关的变量,然后将这些变量用于构建预测模型。通过判别能力(C 指数)、校准(校准曲线)和临床实用性[决策曲线分析(DCA)]来评估预测模型的性能。

结果

该模型由四个临床变量衍生而来:24 小时 SBP 变异系数、24 小时 DBP 变异系数、尿素氮和甘油三酯-葡萄糖(TyG)指数。通过 500 次 bootstrap 迭代调整 C 指数,训练和验证队列的 C 指数分别为 0.731(95%置信区间:0.620-0.794)和 0.799(95%置信区间:0.677-0.892)。通过 500 次 bootstrap 迭代绘制校准图,在训练和验证队列中,预测和观察到 ASCVD 的发生之间均具有较强的相关性。DCA 分析证实了该预测模型的临床实用性。所构建的列线图在与整体 ASCVD 风险评估相比时,对 ASCVD 具有显著的预后预测价值,表现在 C 指数、净重新分类改善、综合判别改善和 DCA 方面的改善。

结论

该基于多模态数据的纵向预测模型可有效预测初诊高血压患者的 ASCVD 风险。

试验注册

该试验在中国临床试验注册中心(ChiCTR2300074392)注册。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验