Ramírez Grau Rubén, Garcia-Aznar Pablo, Sastre German, Goberna-Ferrón Sara, Pavel Octavian, Tirsoaga Alina, Cojocaru Bogdan, Popescu Dana Georgeta, Parvulescu Vasile I, Primo Ana, García Hermenegildo
Instituto Universitario de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain.
Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania.
J Am Chem Soc. 2025 Jan 29;147(4):3315-3332. doi: 10.1021/jacs.4c13481. Epub 2025 Jan 20.
Due to their conductive properties and optoelectronic tunability, MXenes have revolutionized the area of electrocatalysis and active materials in supercapacitors. In comparison, there are only a few reports on MXenes as thermal catalysts for general organic reactions. Herein, the unprecedented catalytic activity of TiC MXene for the hydroamination of alkynes is reported, overcoming the limitations of poor activity, lack of selectivity, and stability, which are generally encountered in the solid catalysts known so far. In the case of TiC, hydroamination exhibits almost complete selectivity for the anti-Markovnikov isomer, for both aliphatic amines and less-reactive aromatic amines. TiC also efficiently catalyzes intramolecular hydroamination, leading to the formation of indol heterocycles. The catalytic hydroamination of C-C multiple bonds is a reaction with complete atom efficiency that may form C-N bonds from convenient reagents. The maximum number of hydroamination sites on the TiC nanosheets is quantified by thermoprogrammed NH desorption. The measured TOF values are on the order of 10 h, with the highest TOF value being 350 h for 1-hexyne hydroamination by butylamine. Therefore, TiC is among the few heterogeneous hydroamination catalysts studied, with its activity per site being comparable to the best hydroamination catalysts reported so far. Density functional theory calculations on the models indicate the cooperation of neighboring Ti atoms in the mechanism. Considering the compositional and structural versatility of MXenes, the present findings open the door for further application of MXenes in other general organic reactions.
由于其导电性能和光电可调性,MXenes彻底改变了电催化和超级电容器活性材料领域。相比之下,关于MXenes作为一般有机反应热催化剂的报道较少。在此,报道了TiC MXene对炔烃氢胺化反应前所未有的催化活性,克服了迄今为止已知固体催化剂普遍存在的活性差、缺乏选择性和稳定性的局限性。在TiC的情况下,对于脂肪族胺和活性较低的芳香族胺,氢胺化反应对反马氏规则异构体几乎具有完全选择性。TiC还能有效催化分子内氢胺化反应,导致吲哚杂环的形成。C-C多重键的催化氢胺化反应是一种原子利用率完全的反应,可由方便的试剂形成C-N键。通过程序升温NH脱附对TiC纳米片上氢胺化位点的最大数量进行了定量。测得的TOF值约为10 h,丁胺对1-己炔氢胺化反应的最高TOF值为350 h。因此,TiC是所研究的少数几种非均相氢胺化催化剂之一,其每个位点的活性与迄今为止报道的最佳氢胺化催化剂相当。对模型的密度泛函理论计算表明了相邻Ti原子在该机理中的协同作用。考虑到MXenes的组成和结构多样性,本研究结果为MXenes在其他一般有机反应中的进一步应用打开了大门。