Instituto Universitario de Tecnología Química, Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain.
Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland.
Small Methods. 2023 Jun;7(6):e2300063. doi: 10.1002/smtd.202300063. Epub 2023 Feb 25.
A general methodology to prepare MXene quantum dots (MxQDs) with yields over 20% by liquid-phase laser ablation of the MAX phase is reported. Mechanical and thermal shock by 532 nm laser pulses (7 ns fwhp, 50 mJ × pulse , 1 Hz pulse frequency) produces MAX etching and exfoliation to form MXene QDs, avoiding the use of HF. The process can be followed by absorption and emission spectroscopy and by dynamic laser scattering and it appears to be general, being applied to Ti AlC , Ti AlC, Nb AlC, and V AlC MAX phases. Density functional theory calculations indicate that, depending on the surface terminal groups, the diminution of the MXene size to the nanometric scale makes it possible to control the band gap of the MXene. The photocatalytic activity of these MXene QDs for hydrogen evolution has been observed, reaching an H production for the most efficient Ti C QDs as high as 2.02 mmol × g × h .
本文报道了一种通过液相激光烧蚀 MAX 相以超过 20%产率制备 MXene 量子点(MxQDs)的通用方法。通过 532nm 激光脉冲(7ns fwhp、50mJ×脉冲、1Hz 脉冲频率)的机械和热冲击会导致 MAX 相的刻蚀和剥落,从而形成 MXene QDs,避免了 HF 的使用。该过程可以通过吸收和发射光谱以及动态激光散射来跟踪,并且似乎具有普遍性,可应用于 TiAlC、TiAlCN、NbAlC 和 VAlC MAX 相。密度泛函理论计算表明,根据表面端基基团,MXene 尺寸减小到纳米级使得控制 MXene 的能带隙成为可能。已经观察到这些 MXene QDs 在光催化制氢方面的活性,对于最有效的 TiC QDs,其 H 产量高达 2.02mmol×g×h。