Suppr超能文献

眼部生物测量光学字符识别:一种利用光学字符识别来提取人工晶状体生物测量值的机器学习算法。

Ocular Biometry OCR: a machine learning algorithm leveraging optical character recognition to extract intra ocular lens biometry measurements.

作者信息

Salvi Anish, Arnal Leo, Ly Kevin, Ferreira Gabriel, Wang Sophia Y, Langlotz Curtis, Mahajan Vinit, Ludwig Chase A

机构信息

School of Medicine, Stanford University, Palo Alto, CA, United States.

Department of Medicine, Chicago Medical School at Rosalind Franklin University, North Chicago, IL, United States.

出版信息

Front Artif Intell. 2025 Jan 6;7:1428716. doi: 10.3389/frai.2024.1428716. eCollection 2024.

Abstract

Given close relationships between ocular structure and ophthalmic disease, ocular biometry measurements (including axial length, lens thickness, anterior chamber depth, and keratometry values) may be leveraged as features in the prediction of eye diseases. However, ocular biometry measurements are often stored as PDFs rather than as structured data in electronic health records. Thus, time-consuming and laborious manual data entry is required for using biometry data as a disease predictor. Herein, we used two separate models, PaddleOCR and Gemini, to extract eye specific biometric measurements from 2,965 Lenstar, 104 IOL Master 500, and 3,616 IOL Master 700 optical biometry reports. For each patient eye, our text extraction pipeline, referred to as Ocular Biometry OCR, involves 1) cropping the report to the biometric data, 2) extracting the text via the optical character recognition model, 3) post-processing the metrics and values into key value pairs, 4) correcting erroneous angles within the pairs, 5) computing the number of errors or missing values, and 6) selecting the window specific results with fewest errors or missing values. To ensure the models' predictions could be put into a machine learning-ready format, artifacts were removed from categorical text data through manual modification where necessary. Performance was evaluated by scoring PaddleOCR and Gemini results. In the absence of ground truth, higher scoring indicated greater inter-model reliability, assuming an equal value between models indicated an accurate result. The detection scores, measuring the number of valid values (i.e., not missing or erroneous), were Lenstar: 0.990, IOLM 500: 1.000, and IOLM 700: 0.998. The similarity scores, measuring the number of equal values, were Lenstar: 0.995, IOLM 500: 0.999, and IOLM 700: 0.999. The agreement scores, combining detection and similarity scores, were Lenstar: 0.985, IOLM 500: 0.999, and IOLM 700: 0.998. IOLM 500 was annotated for ground truths; in this case, higher scoring indicated greater model-to-annotator accuracy. PaddleOCR-to-Annotator achieved scores of detection: 1.000, similarity: 0.999, and agreement: 0.999. Gemini-to-Annotator achieved scores of detection: 1.000, similarity: 1.000, and agreement: 1.000. Scores range from 0 to 1. While PaddleOCR and Gemini demonstrated high agreement, PaddleOCR offered slightly better performance upon reviewing quantitative and qualitative results.

摘要

鉴于眼部结构与眼科疾病之间存在密切关系,眼部生物测量值(包括眼轴长度、晶状体厚度、前房深度和角膜曲率值)可作为预测眼部疾病的特征。然而,眼部生物测量值在电子健康记录中通常以PDF格式存储,而非结构化数据。因此,要将生物测量数据用作疾病预测指标,需要进行耗时费力的手动数据录入。在此,我们使用了两个独立的模型PaddleOCR和Gemini,从2965份Lenstar、104份IOL Master 500和3616份IOL Master 700光学生物测量报告中提取眼部特定的生物测量值。对于每只患者眼睛,我们的文本提取流程(称为眼部生物测量OCR)包括:1)将报告裁剪至生物测量数据部分;2)通过光学字符识别模型提取文本;3)将指标和值后处理为键值对;4)纠正键值对内的错误角度;5)计算错误或缺失值的数量;6)选择错误或缺失值最少的特定窗口结果。为确保模型的预测结果能够转换为适用于机器学习的格式,必要时通过手动修改从分类文本数据中去除伪像。通过对PaddleOCR和Gemini的结果进行评分来评估性能。在没有地面真值的情况下,得分越高表明模型间的可靠性越高,假设模型间得分相等则表明结果准确。检测得分衡量有效值(即非缺失或错误的值)的数量,Lenstar为0.990,IOLM 500为1.000,IOLM 700为0.998。相似性得分衡量相等值的数量,Lenstar为0.995,IOLM 500为0.999,IOLM 700为0.999。一致性得分结合了检测得分和相似性得分,Lenstar为0.985,IOLM 500为0.999,IOLM 700为0.998。IOLM 500有地面真值注释;在这种情况下,得分越高表明模型与注释者之间的准确性越高。PaddleOCR与注释者之间的检测得分为1.000,相似性得分为0.999,一致性得分为0.999。Gemini与注释者之间的检测得分为1.000,相似性得分为1.000,一致性得分为1.000。得分范围为0至1。虽然PaddleOCR和Gemini表现出高度一致性,但在审查定量和定性结果时,PaddleOCR的性能略优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ff/11743993/56fa44b822a0/frai-07-1428716-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验