Suppr超能文献

人工智能定义了基于蛋白质的甲状腺结节分类。

Artificial intelligence defines protein-based classification of thyroid nodules.

作者信息

Sun Yaoting, Selvarajan Sathiyamoorthy, Zang Zelin, Liu Wei, Zhu Yi, Zhang Hao, Chen Wanyuan, Chen Hao, Li Lu, Cai Xue, Gao Huanhuan, Wu Zhicheng, Zhao Yongfu, Chen Lirong, Teng Xiaodong, Mantoo Sangeeta, Lim Tony Kiat-Hon, Hariraman Bhuvaneswari, Yeow Serene, Alkaff Syed Muhammad Fahmy, Lee Sze Sing, Ruan Guan, Zhang Qiushi, Zhu Tiansheng, Hu Yifan, Dong Zhen, Ge Weigang, Xiao Qi, Wang Weibin, Wang Guangzhi, Xiao Junhong, He Yi, Wang Zhihong, Sun Wei, Qin Yuan, Zhu Jiang, Zheng Xu, Wang Linyan, Zheng Xi, Xu Kailun, Shao Yingkuan, Zheng Shu, Liu Kexin, Aebersold Ruedi, Guan Haixia, Wu Xiaohong, Luo Dingcun, Tian Wen, Li Stan Ziqing, Kon Oi Lian, Iyer Narayanan Gopalakrishna, Guo Tiannan

机构信息

Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.

Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.

出版信息

Cell Discov. 2022 Sep 6;8(1):85. doi: 10.1038/s41421-022-00442-x.

Abstract

Determination of malignancy in thyroid nodules remains a major diagnostic challenge. Here we report the feasibility and clinical utility of developing an AI-defined protein-based biomarker panel for diagnostic classification of thyroid nodules: based initially on formalin-fixed paraffin-embedded (FFPE), and further refined for fine-needle aspiration (FNA) tissue specimens of minute amounts which pose technical challenges for other methods. We first developed a neural network model of 19 protein biomarkers based on the proteomes of 1724 FFPE thyroid tissue samples from a retrospective cohort. This classifier achieved over 91% accuracy in the discovery set for classifying malignant thyroid nodules. The classifier was externally validated by blinded analyses in a retrospective cohort of 288 nodules (89% accuracy; FFPE) and a prospective cohort of 294 FNA biopsies (85% accuracy) from twelve independent clinical centers. This study shows that integrating high-throughput proteomics and AI technology in multi-center retrospective and prospective clinical cohorts facilitates precise disease diagnosis which is otherwise difficult to achieve by other methods.

摘要

甲状腺结节恶性程度的判定仍然是一项重大的诊断挑战。在此,我们报告了开发一种基于人工智能定义的蛋白质生物标志物 panel 用于甲状腺结节诊断分类的可行性和临床实用性:最初基于福尔马林固定石蜡包埋(FFPE)样本,并且针对微量细针穿刺(FNA)组织样本进行了进一步优化,而微量细针穿刺组织样本对其他方法来说存在技术挑战。我们首先基于来自一个回顾性队列的 1724 个 FFPE 甲状腺组织样本的蛋白质组开发了一个包含 19 种蛋白质生物标志物的神经网络模型。该分类器在用于分类甲状腺恶性结节的发现集中准确率超过 91%。通过对来自十二个独立临床中心的 288 个结节的回顾性队列(准确率 89%;FFPE)和 294 例 FNA 活检的前瞻性队列(准确率 85%)进行盲法分析,对该分类器进行了外部验证。这项研究表明,在多中心回顾性和前瞻性临床队列中整合高通量蛋白质组学和人工智能技术有助于实现精确的疾病诊断,而这是其他方法难以做到的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa00/9448820/d4fac3559091/41421_2022_442_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验