Suppr超能文献

探究中国城市碳排放与空气污染物的协同演变及影响因素的时空异质性

Exploring synergistic evolution of carbon emissions and air pollutants and spatiotemporal heterogeneity of influencing factors in Chinese cities.

作者信息

Zhao Xue, Shao Bilin, Su Jia, Tian Ning

机构信息

School of Management, Xi'an University of Architecture and Technology, Xi'an, 710055, China.

出版信息

Sci Rep. 2025 Jan 21;15(1):2657. doi: 10.1038/s41598-024-84212-7.

Abstract

The acceleration of urbanization has significantly exacerbated climate change due to excessive anthropogenic carbon emissions and air pollutants. Based on data from 281 prefecture-level cities in China between 2015 and 2021. The spatiotemporal co-evolution of urban carbon emissions and air pollutants was analyzed through map visualization and kernel density estimation, revealing non-equilibrium and heterogeneity. Extreme gradient boosting (XGBoost) multiscale geographically weighted regression models(MGWR) and SHAP theory from game theory were employed to deeply investigate the disparities in relevance, spatial heterogeneity, and multiscale fluctuations of carbon emissions and air pollution. The main results are summarized as follows: (1) Between 2015 and 2018, CO emissions exhibited significant fluctuations, while SO and PM concentrations decreased markedly. (2) The XGBoost-SHAP model identified seven key driving factors, demonstrating high precision, the SHAP model is used to explain the model and reveal the influence of driving factors on carbon emissions. (3) The concentrations of CO, SO, and PM were positively correlated, the influence of each factor exhibited significant spatiotemporal differences, with varying directions of fluctuation across different regions. Thus, the symbiotic relationship between carbon emissions and air pollutants can inform decision-making for regional planning and sustainable urban development.

摘要

城市化加速由于过多的人为碳排放和空气污染物而显著加剧了气候变化。基于2015年至2021年间中国281个地级市的数据,通过地图可视化和核密度估计分析了城市碳排放与空气污染物的时空协同演化,揭示了不均衡性和异质性。采用极端梯度提升(XGBoost)多尺度地理加权回归模型(MGWR)以及博弈论中的SHAP理论,深入研究碳排放与空气污染在相关性、空间异质性和多尺度波动方面的差异。主要结果总结如下:(1)2015年至2018年间,一氧化碳(CO)排放呈现显著波动,而二氧化硫(SO)和颗粒物(PM)浓度明显下降。(2)XGBoost-SHAP模型识别出七个关键驱动因素,显示出高精度,SHAP模型用于解释该模型并揭示驱动因素对碳排放的影响。(3)CO、SO和PM的浓度呈正相关,各因素的影响呈现出显著的时空差异,不同区域的波动方向各不相同。因此,碳排放与空气污染物之间的共生关系可为区域规划和城市可持续发展的决策提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4e/11751432/9634410ffa52/41598_2024_84212_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验