Suppr超能文献

人工智能驱动从石蒜-虎掌南星药对中鉴定协同抗乳腺癌化合物组合并进行机制探索

Artificial intelligence-driven identification and mechanistic exploration of synergistic anti-breast cancer compound combinations from L.- Hand.-Mazz. herb pair.

作者信息

Feng Chunlai, Cheng Jiaxi, Sun Mengqiu, Qiao Chunxue, Feng Qiuqi, Fang Naying, Ge Yingying, Rui Mengjie

机构信息

School of Pharmacy, Jiangsu University, Zhenjiang, China.

出版信息

Front Pharmacol. 2025 Jan 7;15:1522787. doi: 10.3389/fphar.2024.1522787. eCollection 2024.

Abstract

INTRODUCTION

The L. (PVL) and Hand.-Mazz. (TH) herb pair, which is commonly used in traditional Chinese medicine (TCM), has been applied for the treatment of breast cancer. Although its efficacy is validated, the synergistic anti-breast cancer compound combinations within this herb pair and their underlying mechanisms of action remain unclear.

METHODS

This study aimed to identify and validate synergistic anti-breast cancer compound combinations within the PVL-TH pair using large-scale biomedical data, artificial intelligence and experimental methods. The first step was to investigate the anti-breast cancer effects of various PVL and TH extracts using cellular assays to identify the most effective superior extracts. These superior extracts were subjected to liquid chromatography-mass spectrometry (LC-MS) analysis to identify their constituent compounds. A deep learning-based prediction model, DeepMDS, was applied to predict synergistic anti-breast cancer multi-compound combinations. These predicted combinations were experimentally validated for their anti-breast cancer effects at actual content ratios found in the extracts. Preliminary bioinformatics analyses were conducted to explore the mechanisms of action of these superior combinations. We also compared the anti-breast cancer effects of superior extracts from different geographical origins and analyzed the contents of compounds to assess their representation of the anti-tumor effect of the corresponding TCM.

RESULTS

The results revealed that LC-MS analysis identified 27 and 21 compounds in the superior extracts (50% ethanol extracts) of PVL and TH, respectively. Based on these compounds, DeepMDS model predicted synergistic anti-breast cancer compound combinations such as F973 (caffeic acid, rosmarinic acid, p-coumaric acid, and esculetin), T271 (chlorogenic acid, cichoric acid, and caffeic acid), and T1685 (chlorogenic acid, rosmarinic acid, and scopoletin) from single PVL, single TH and PVL-TH herb pair, respectively. These combinations, at their actual concentrations in extracts, demonstrated superior anti-breast cancer activity compared to the corresponding extracts. The bioinformatics analysis revealed that these compounds could regulate tumor-related pathways synergistically, inhibiting tumor cell growth, inducing cell apoptosis, and blocking cell cycle progression. Furthermore, the concentration ratio and total content of compounds in F973 and T271 were closely associated with their anti-breast cancer effects in extracts from various geographical origins. The compound combination T1685 could represent the synergistic anti-breast cancer effects of the PVL-TH pair.

DISCUSSION

This study provides insights into exploring the representative synergistic anti-breast cancer compound combinations within the complex TCM.

摘要

引言

中药中常用的露蜂房(PVL)和山慈菇(TH)药对已被应用于乳腺癌的治疗。尽管其疗效得到了验证,但该药对中协同抗乳腺癌的化合物组合及其潜在作用机制仍不清楚。

方法

本研究旨在利用大规模生物医学数据、人工智能和实验方法,识别并验证PVL-TH药对中协同抗乳腺癌的化合物组合。第一步是使用细胞实验研究各种PVL和TH提取物的抗乳腺癌作用,以确定最有效的优质提取物。对这些优质提取物进行液相色谱-质谱(LC-MS)分析,以鉴定其成分化合物。应用基于深度学习的预测模型DeepMDS预测协同抗乳腺癌的多化合物组合。在提取物中实际发现的含量比例下,对这些预测组合的抗乳腺癌作用进行实验验证。进行初步的生物信息学分析,以探索这些优质组合的作用机制。我们还比较了不同地理来源的优质提取物的抗乳腺癌作用,并分析了化合物含量,以评估它们对相应中药抗肿瘤作用的代表性。

结果

结果显示,LC-MS分析分别在PVL和TH的优质提取物(50%乙醇提取物)中鉴定出27种和21种化合物。基于这些化合物,DeepMDS模型分别从单一PVL、单一TH和PVL-TH药对中预测出协同抗乳腺癌的化合物组合,如F973(咖啡酸、迷迭香酸、对香豆酸和七叶亭)、T271(绿原酸、菊苣酸和咖啡酸)和T1685(绿原酸、迷迭香酸和东莨菪素)。这些组合在提取物中的实际浓度下,与相应提取物相比,表现出更强的抗乳腺癌活性。生物信息学分析表明,这些化合物可协同调节肿瘤相关通路,抑制肿瘤细胞生长、诱导细胞凋亡并阻断细胞周期进程。此外,F973和T271中化合物的浓度比和总含量与它们在不同地理来源提取物中的抗乳腺癌作用密切相关。化合物组合T1685可代表PVL-TH药对的协同抗乳腺癌作用。

讨论

本研究为探索复杂中药中具有代表性的协同抗乳腺癌化合物组合提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5584/11747269/2ca199a8f9c4/fphar-15-1522787-g001.jpg

相似文献

2
A general prediction model for compound-protein interactions based on deep learning.
Front Pharmacol. 2024 Sep 4;15:1465890. doi: 10.3389/fphar.2024.1465890. eCollection 2024.
6
Exploration and validation of Taraxacum mongolicum anti-cancer effect.
Comput Biol Med. 2022 Sep;148:105819. doi: 10.1016/j.compbiomed.2022.105819. Epub 2022 Jul 6.
8
Elucidating the chemical interaction effects of herb pair Danshen-Chuanxiong and its anti-ischemic stroke activities evaluation.
J Ethnopharmacol. 2024 Jan 10;318(Pt B):117058. doi: 10.1016/j.jep.2023.117058. Epub 2023 Aug 17.

引用本文的文献

1
Phytochemicals in Breast Cancer Prevention and Therapy: Mechanisms, Efficacy, and Future Prospects.
Curr Issues Mol Biol. 2025 Jul 8;47(7):527. doi: 10.3390/cimb47070527.

本文引用的文献

4
Cancer chemoprevention with PV-1, a novel -containing herbal mixture that remodels the tumor immune microenvironment in mice.
Front Immunol. 2023 Nov 24;14:1196434. doi: 10.3389/fimmu.2023.1196434. eCollection 2023.
5
Mechanisms of Traditional Chinese medicine/natural medicine in HR-positive Breast Cancer: A comprehensive Literature Review.
J Ethnopharmacol. 2024 Jan 30;319(Pt 3):117322. doi: 10.1016/j.jep.2023.117322. Epub 2023 Oct 20.
6
L.: An Updated Overview of Botany, Chemical Composition, Extraction Methods, and Biological Activities.
Pharmaceuticals (Basel). 2023 Aug 4;16(8):1106. doi: 10.3390/ph16081106.
8
Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling.
Front Pharmacol. 2023 Jun 6;14:1200843. doi: 10.3389/fphar.2023.1200843. eCollection 2023.
9
Rosmarinic acid, the active component of Rubi Fructus, induces apoptosis of SGC-7901 and HepG2 cells through mitochondrial pathway and exerts anti-tumor effect.
Naunyn Schmiedebergs Arch Pharmacol. 2023 Dec;396(12):3743-3755. doi: 10.1007/s00210-023-02552-z. Epub 2023 Jun 20.
10
Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies.
Front Pharmacol. 2022 Dec 15;13:1032875. doi: 10.3389/fphar.2022.1032875. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验