Ferioun Mohamed, Zouitane Ilham, Bouhraoua Said, Elouattassi Yasmine, Belahcen Douae, Errabbani Abdellatif, Louahlia Said, Sayyed Riyaz, El Ghachtouli Naïma
Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
Front Plant Sci. 2025 Jan 7;15:1494987. doi: 10.3389/fpls.2024.1494987. eCollection 2024.
With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components. In this context, the present review aims to underscore the importance of selecting drought-tolerant barley genotypes and utilizing bio-inoculants constructed from beneficial microorganisms as an agroecological approach to enhance barley growth and production resilience under varying environmental conditions. Selecting barley genotypes with robust physiological and agronomic tolerance can mitigate losses under diverse environmental conditions. Plant Growth Promoting Rhizobacteria (PGPR) play a crucial role in promoting plant growth through nutrient solubilization, nitrogen fixation, phytohormone production, exopolysaccharide secretion, enzyme activity enhancement, and many other mechanisms. Applying drought-tolerant genotypes with bio-inoculants containing PGPR, improves barley's drought tolerance thereby minimizing losses caused by water scarcity.
随着气候变化,水资源短缺地区的出现频率逐年增加,这对作物产量构成了重大挑战。大麦是全球消费和种植的主要作物,特别容易受到干旱胁迫的不利影响,导致产量下降。水资源短缺对大麦生长的多个方面产生不利影响,包括种子萌发、生物量生产、地上部和根部特征、水分和渗透状态、光合作用,并引发氧化应激,导致谷物产量及其构成成分大幅损失。在此背景下,本综述旨在强调选择耐旱大麦基因型以及利用由有益微生物构建的生物菌剂作为一种农业生态方法来增强大麦在不同环境条件下的生长和生产恢复力的重要性。选择具有强大生理和农艺耐受性的大麦基因型可以减轻不同环境条件下的损失。植物促生根际细菌(PGPR)通过养分溶解、固氮、植物激素产生、胞外多糖分泌、酶活性增强等多种机制在促进植物生长方面发挥着关键作用。将耐旱基因型与含有PGPR的生物菌剂一起施用,可提高大麦的耐旱性,从而将水资源短缺造成的损失降至最低。