Suppr超能文献

YOLOv7-DWS:基于改进YOLOv7的多密度环境下茶芽识别与检测网络

YOLOv7-DWS: tea bud recognition and detection network in multi-density environment via improved YOLOv7.

作者信息

Wang Xiaoming, Wu Zhenlong, Xiao Guannan, Han Chongyang, Fang Cheng

机构信息

Chengdu Polytechnic, Innovation and Practice Base for Postdoctors, Chengdu, Sichuan, China.

Sichuan Provincial Engineering Research Center of Thermoelectric Materials and Devices, Chengdu, Sichuan, China.

出版信息

Front Plant Sci. 2025 Jan 7;15:1503033. doi: 10.3389/fpls.2024.1503033. eCollection 2024.

Abstract

INTRODUCTION

Accurate detection and recognition of tea bud images can drive advances in intelligent harvesting machinery for tea gardens and technology for tea bud pests and diseases. In order to realize the recognition and grading of tea buds in a complex multi-density tea garden environment.

METHODS

This paper proposes an improved YOLOv7 object detection algorithm, called YOLOv7-DWS, which focuses on improving the accuracy of tea recognition. First, we make a series of improvements to the YOLOv7 algorithm, including decouple head to replace the head of YOLOv7, to enhance the feature extraction ability of the model and optimize the class decision logic. The problem of simultaneous detection and classification of one-bud-one-leaf and one-bud-two-leaves of tea was solved. Secondly, a new loss function WiseIoU is proposed for the loss function in YOLOv7, which improves the accuracy of the model. Finally, we evaluate different attention mechanisms to enhance the model's focus on key features.

RESULTS AND DISCUSSION

The experimental results show that the improved YOLOv7 algorithm has significantly improved over the original algorithm in all evaluation indexes, especially in the (+6.2%) and mAP@0.5 (+7.7%). From the results, the algorithm in this paper helps to provide a new perspective and possibility for the field of tea image recognition.

摘要

引言

准确检测和识别茶芽图像能够推动茶园智能采摘机械以及茶芽病虫害防治技术的发展。为了实现复杂多密度茶园环境下茶芽的识别与分级。

方法

本文提出了一种改进的YOLOv7目标检测算法,即YOLOv7-DWS,其专注于提高茶叶识别的准确率。首先,我们对YOLOv7算法进行了一系列改进,包括解耦头以替换YOLOv7的头部,以增强模型的特征提取能力并优化类别决策逻辑。解决了茶叶一芽一叶和一芽两叶同时检测与分类的问题。其次,针对YOLOv7中的损失函数提出了一种新的损失函数WiseIoU,提高了模型的准确率。最后,我们评估了不同的注意力机制,以增强模型对关键特征的关注。

结果与讨论

实验结果表明,改进后的YOLOv7算法在所有评估指标上均比原始算法有显著提高,尤其是在召回率(+6.2%)和mAP@0.5(+7.7%)方面。从结果来看,本文算法有助于为茶图像识别领域提供新的视角和可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验