Zeballos Nicoll, Ginés-Alcober Irene, Macías-León Javier, Andrés-Sanz Daniel, González-Ramírez Andrés Manuel, Sánchez-Costa Mercedes, Merino Pedro, Hurtado-Guerrero Ramón, López-Gallego Fernando
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain.
Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Zaragoza, Spain.
Protein Sci. 2025 Feb;34(2):e70040. doi: 10.1002/pro.70040.
Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited. Here, we propose a novel approach that tailors the enzyme surface with engineered His-rich loops. To that aim, we first solve the X-ray crystal structure of a hexameric alcohol dehydrogenase from Thermus thermophilus HB27 (TtHBDH) (PDB: 9FBD). Guided by this 3D structure, we engineer the enzyme surface with a new loop enriched with six His residues to control enzyme orientation. Molecular dynamics simulations reveal that the engineered loop's imidazole rings have greater solvent accessibility than those in native His residues, allowing for more efficient enzyme immobilization on certain metal chelate-functionalized carriers. Using carriers functionalized with iron (III)-catechol, the apparent V of the immobilized loop variant doubles the immobilized His-tagged one, and vice versa when both variants are immobilized on carriers functionalized with copper (II)-imidodiacetic acid. His-tagged and loop-engineered TtHBDH show high operational stability reaching 100% bioconversion after 10 reaction cycles, yet the loop variant is faster than the His-tagged one.
酶固定化对于提高酶在各种工业应用中的性能不可或缺。通常,酶需要特定的空间排列以实现最佳功能,这突出了正确取向的重要性。尽管有众所周知的N端或C端剪裁技术,但实现取向控制的替代方法有限。在此,我们提出了一种新颖的方法,即通过工程化富含组氨酸的环来修饰酶表面。为此,我们首先解析了嗜热栖热菌HB27(TtHBDH)的六聚体醇脱氢酶的X射线晶体结构(PDB:9FBD)。在这种三维结构的指导下,我们用富含六个组氨酸残基的新环修饰酶表面,以控制酶的取向。分子动力学模拟表明,工程化环的咪唑环比天然组氨酸残基中的咪唑环具有更高的溶剂可及性,从而允许酶更有效地固定在某些金属螯合功能化载体上。使用用铁(III)-儿茶酚功能化的载体,固定化环变体的表观V比固定化His标签变体的表观V增加一倍,反之,当两种变体都固定在用铜(II)-亚氨基二乙酸功能化的载体上时,情况则相反。His标签化和环工程化的TtHBDH显示出高操作稳定性,在10个反应循环后达到100%的生物转化率,但环变体比His标签化变体更快。