Suppr超能文献

调节C57BL/6小鼠肠道微生物群的碳水化合物代谢功能。

regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice.

作者信息

Geng Peiling, Zhao Ni, Zhou Yufan, Harris Reuben S, Ge Yong

机构信息

Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA.

Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA.

出版信息

Gut Microbes. 2025 Dec;17(1):2455503. doi: 10.1080/19490976.2025.2455503. Epub 2025 Jan 22.

Abstract

The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct strains might lead to functional differences in the gut microbiome. Here, we isolated and characterized a novel strain (UT1) that belongs to the most prevalent but underappreciated phylogenetic clade in the global human population. Genome analysis showed that this butyrate-producing isolate carries multiple putative mobile genetic elements, a clade-specific defense system, and a range of carbohydrate catabolic enzymes. Multiomic approaches were used to profile the impact of UT1 on the gut microbiome and associated metabolic activity of C57BL/6 mice at homeostasis. Both 16S rRNA and metagenomic sequencing demonstrated that oral administration of UT1 resulted in profound microbial compositional changes including a significant enrichment of , , and . Functional profiling of the fecal metagenomes revealed a markedly higher abundance of carbohydrate-active enzymes (CAZymes) in UT1-gavaged mice. Accordingly, UT1-conditioned microbiota possessed the elevated capability of utilizing starch and exhibited a lower availability of microbiota-accessible carbohydrates in the gut. Further analysis uncovered a functional network wherein UT1 reduced the abundance of mucin-degrading CAZymes and microbes, which correlated with a concomitant reduction of fecal mucin glycans. Collectively, our results reveal a crucial role of UT1 in facilitating the carbohydrate metabolism of the gut microbiome and expand our understanding of the genetic and phenotypic diversity of .

摘要

微生物对宿主代谢和健康的益生菌影响取决于宿主遗传学和细菌基因组变异。 是作为下一代益生菌出现的主要人类肠道共生菌。尽管这种细菌表现出大量种内多样性,但尚不清楚基因不同的 菌株是否可能导致肠道微生物群的功能差异。在这里,我们分离并鉴定了一种新型 菌株(UT1),它属于全球人类中最普遍但未被充分认识的系统发育分支。基因组分析表明,这种产生丁酸盐的分离株携带多个假定的可移动遗传元件、一个分支特异性防御系统和一系列碳水化合物分解代谢酶。采用多组学方法来分析UT1对处于稳态的C57BL/6小鼠肠道微生物群和相关代谢活性的影响。16S rRNA和宏基因组测序均表明,口服UT1导致微生物组成发生深刻变化,包括 、 和 的显著富集。粪便宏基因组的功能分析显示,UT1灌胃小鼠中碳水化合物活性酶(CAZymes)的丰度明显更高。因此,UT1调节的微生物群具有更高的利用淀粉的能力,并且在肠道中微生物可利用碳水化合物的可用性较低。进一步分析发现了一个功能网络,其中UT1降低了粘蛋白降解CAZymes和微生物的丰度,这与粪便粘蛋白聚糖的相应减少相关。总的来说,我们的结果揭示了UT1在促进肠道微生物群碳水化合物代谢中的关键作用,并扩展了我们对 的遗传和表型多样性的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验