Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom.
mBio. 2021 Jun 29;12(3):e0362820. doi: 10.1128/mBio.03628-20. Epub 2021 Jun 1.
β-Mannans are hemicelluloses that are abundant in modern diets as components in seed endosperms and common additives in processed food. Currently, the collective understanding of β-mannan saccharification in the human colon is limited to a few keystone species, which presumably liberate low-molecular-weight mannooligosaccharide fragments that become directly available to the surrounding microbial community. Here, we show that a dominant butyrate producer in the human gut, Faecalibacterium prausnitzii, is able to acquire and degrade various β-mannooligosaccharides (β-MOS), which are derived by the primary mannanolytic activity of neighboring gut microbiota. Detailed biochemical analyses of selected protein components from their two β-MOS utilization loci (F. prausnitzii β-MOS utilization loci [MULs]) supported a concerted model whereby the imported β-MOS are stepwise disassembled intracellularly by highly adapted enzymes. Coculturing experiments of F. prausnitzii with the primary degraders Bacteroides ovatus and Roseburia intestinalis on polymeric β-mannan resulted in syntrophic growth, thus confirming the high efficiency of the MULs' uptake system. Genomic comparison with human strains and analyses of 2,441 public human metagenomes revealed that MULs are highly conserved and distributed worldwide. Together, our results provide a significant advance in the knowledge of β-mannan metabolism and the degree to which its degradation is mediated by cross-feeding interactions between prominent beneficial microbes in the human gut. Commensal butyrate-producing bacteria belonging to the phylum are abundant in the human gut and are crucial for maintaining health. Currently, insight is lacking into how they target otherwise indigestible dietary fibers and into the trophic interactions they establish with other glycan degraders in the competitive gut environment. By combining cultivation, genomic, and detailed biochemical analyses, this work reveals the mechanism enabling , as a model within , to cross-feed and access β-mannan-derived oligosaccharides released in the gut ecosystem by the action of primary degraders. A comprehensive survey of human gut metagenomes shows that MULs are ubiquitous in human populations globally, highlighting the importance of microbial metabolism of β-mannans/β-MOS as a common dietary component. Our findings provide a mechanistic understanding of the β-MOS utilization capability by that may be exploited to select dietary formulations specifically boosting this beneficial symbiont, and thus butyrate production, in the gut.
β-甘露聚糖是半纤维素的一种,作为现代饮食中种子胚乳的成分和加工食品中的常见添加剂,其含量丰富。目前,人类结肠中β-甘露聚糖的消化作用的综合认识仅限于少数关键种属,这些种属推测可以释放低分子量甘露寡糖片段,这些片段可直接被周围微生物群落利用。在这里,我们发现人类肠道中的一种主要丁酸产生菌,普拉梭菌(Faecalibacterium prausnitzii),能够获取和降解各种β-甘露寡糖(β-MOS),这些寡糖是由邻近肠道微生物群的主要甘露聚糖酶活性产生的。对其两个β-MOS 利用基因座(普拉梭菌β-MOS 利用基因座[MUL])中选定蛋白成分的详细生化分析支持了一个协调模型,即通过高度适应的酶,进口的β-MOS 可在细胞内逐步分解。普拉梭菌与主要降解菌卵形拟杆菌(Bacteroides ovatus)和直肠真杆菌(Roseburia intestinalis)在聚合β-甘露聚糖上共培养的实验结果表明,存在协同生长,这证实了 MUL 摄取系统的高效率。与人类菌株的基因组比较和对 2441 个人类宏基因组的分析表明,MUL 高度保守且分布广泛。总的来说,我们的研究结果在β-甘露聚糖代谢以及其降解在多大程度上受到人类肠道中主要有益微生物的交叉喂养相互作用的介导方面提供了重大进展。属于厚壁菌门的共生丁酸产生菌在人类肠道中大量存在,对于维持健康至关重要。目前,人们对它们如何针对其他不可消化的膳食纤维以及它们与竞争肠道环境中的其他聚糖降解物建立的营养相互作用缺乏了解。通过结合培养、基因组和详细的生化分析,这项工作揭示了使作为模型种属内的能够交叉喂养并利用主要降解物在肠道生态系统中释放的β-甘露聚糖衍生的低聚糖的机制。对人类肠道宏基因组的全面调查表明,MUL 在全球人类群体中普遍存在,突出了微生物代谢β-甘露聚糖/β-MOS 作为一种常见饮食成分的重要性。我们的研究结果提供了对普拉梭菌利用β-MOS 能力的机制理解,这可能被用来选择专门促进这种有益共生体和肠道中丁酸产生的饮食配方。