Suppr超能文献

运行中的自旋纳米振荡器的磁力显微镜。

Magnetic force microscopy of an operational spin nano-oscillator.

作者信息

Banuazizi Seyed Amir Hossein, Houshang Afshin, Awad Ahmad A, Mohammadi Javad, Åkerman Johan, Belova Liubov M

机构信息

Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

Materials and Nanophysics, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 114 19 Stockholm, Sweden.

出版信息

Microsyst Nanoeng. 2022 Jun 15;8:65. doi: 10.1038/s41378-022-00380-4. eCollection 2022.

Abstract

Magnetic force microscopy (MFM) is a powerful technique for studying magnetic microstructures and nanostructures that relies on force detection by a cantilever with a magnetic tip. The detected magnetic tip interactions are used to reconstruct the magnetic structure of the sample surface. Here, we demonstrate a new method using MFM for probing the spatial profile of an operational nanoscale spintronic device, the spin Hall nano-oscillator (SHNO), which generates high-intensity spin wave auto-oscillations enabling novel microwave applications in magnonics and neuromorphic computing. We developed an MFM system by adding a microwave probe station to allow electrical and microwave characterization up to 40 GHz during the MFM process. SHNOs-based on NiFe/Pt bilayers with a specific design compatible with the developed system-were fabricated and scanned using a Co magnetic force microscopy tip with 10 nm spatial MFM resolution, while a DC current sufficient to induce auto-oscillation flowed. Our results show that this developed method provides a promising path for the characterization and nanoscale magnetic field imaging of operational nano-oscillators.

摘要

磁力显微镜(MFM)是一种用于研究磁性微观结构和纳米结构的强大技术,它依靠带有磁性尖端的悬臂进行力检测。检测到的磁性尖端相互作用用于重建样品表面的磁性结构。在此,我们展示了一种使用MFM探测纳米级自旋电子器件——自旋霍尔纳米振荡器(SHNO)工作时空间分布的新方法,该振荡器能产生高强度自旋波自振荡,可用于磁振子学和神经形态计算中的新型微波应用。我们通过添加一个微波探针台开发了一个MFM系统,以便在MFM过程中进行高达40 GHz的电学和微波特性表征。制备了基于具有与所开发系统兼容的特定设计的NiFe/Pt双层的SHNO,并在施加足以诱导自振荡的直流电流时,使用具有10 nm空间MFM分辨率的钴磁力显微镜尖端进行扫描。我们的结果表明,这种开发的方法为工作中的纳米振荡器的表征和纳米级磁场成像提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9687/9200774/5c822549a9d0/41378_2022_380_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验