Zhou Yijie, Ciarla Robert, Boonkird Artittaya, Raza Saqlain, Nguyen Thanh, Zhou Jiawei, Osti Naresh C, Mamontov Eugene, Jiang Zhang, Zuo Xiaobing, Ranasinghe Jeewan, Hu Weiguo, Scott Brendan, Chen Jihua, Hensley Dale K, Huang Shengxi, Liu Jun, Li Mingda, Xu Yanfei
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Sci Adv. 2025 Jan 24;11(4):eadp6516. doi: 10.1126/sciadv.adp6516. Epub 2025 Jan 22.
To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model. Measured thermal conductivities of ~1.38 ± 0.22 W m K in PVA/defective filler composites is higher than those of ~0.86 ± 0.21 W m K in PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. We identify how thermal transport occurs across heterogeneous interfaces. Thermal transport measurements, neutron scattering, quantum mechanical modeling, and molecular dynamics simulations reveal that vibrational coupling between PVA and defective fillers at PVA/filler interfaces enhances thermal conductivity, suggesting that defects in polymer composites improve thermal transport by promoting this vibrational coupling.
为了突破聚合物复合材料热导率的上限,了解热传输机制至关重要。尽管有大量的模拟研究,但对聚合物复合材料热传输的系统实验研究仍然有限。为了更好地理解热传输过程,我们以聚乙烯醇(PVA)为基体模型,设计了含有完美填料(石墨)和缺陷填料(氧化石墨)的聚合物复合材料。在PVA/缺陷填料复合材料中测得的热导率约为1.38±0.22W m⁻¹ K⁻¹,高于PVA/完美填料复合材料中测得的约0.86±0.21W m⁻¹ K⁻¹,而缺陷填料中的热导率低于完美填料中的热导率。我们确定了热传输是如何在异质界面间发生的。热传输测量、中子散射、量子力学建模和分子动力学模拟表明,PVA与PVA/填料界面处的缺陷填料之间的振动耦合提高了热导率,这表明聚合物复合材料中的缺陷通过促进这种振动耦合来改善热传输。