Suppr超能文献

数据管理与共享。

Data management and sharing.

作者信息

Pellen Claude, Munung Nchangwi Syntia, Armond Anna Catharina, Kulp Daniel, Mansmann Ulrich, Siebert Maximilian, Naudet Florian

机构信息

University Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Centre d'investigation clinique de Rennes (CIC1414), Rennes, France.

Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.

出版信息

J Clin Epidemiol. 2025 Apr;180:111680. doi: 10.1016/j.jclinepi.2025.111680. Epub 2025 Jan 20.

Abstract

Guided by the FAIR principles (Findable, Accessible, Interoperable, Reusable), responsible data sharing requires well-organized, high-quality datasets. However, researchers often struggle with implementing Data Management and Sharing Plans due to lack of knowledge on how to do this, time constraints, and legal, technical, and financial challenges, particularly concerning data ownership and privacy. While patients support data sharing, researchers and funders may hesitate, fearing the loss of intellectual property or competitive advantage. Although some journals and institutions encourage or mandate data sharing, further progress is needed. Additionally, global solutions are vital to ensure equitable participation from low- and middle-income countries. Ultimately, responsible data sharing requires strategic planning, cultural shifts in research, and coordinated efforts from all stakeholders to become standard practice in biomedical research.

摘要

在公平原则(可查找、可访问、可互操作、可重用)的指导下,负责任的数据共享需要组织良好、高质量的数据集。然而,由于缺乏相关操作知识、时间限制以及法律、技术和财务方面的挑战,特别是在数据所有权和隐私方面,研究人员在实施数据管理和共享计划时常常遇到困难。虽然患者支持数据共享,但研究人员和资助者可能会犹豫不决,担心失去知识产权或竞争优势。尽管一些期刊和机构鼓励或强制要求数据共享,但仍需进一步推进。此外,全球解决方案对于确保低收入和中等收入国家的公平参与至关重要。最终,负责任的数据共享需要战略规划、研究文化的转变以及所有利益相关者的协同努力,以成为生物医学研究的标准做法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验