Choi Suji, Fan Ziwen, Im Jihye, Nguyen Thanh Loc, Park Nuri, Choi Youngjin, Lee Jun Yup, Kim Jaeyun
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Carbohydr Polym. 2025 Mar 15;352:123193. doi: 10.1016/j.carbpol.2024.123193. Epub 2024 Dec 26.
Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched. The tendon-mimicking hydrogel was fabricated using alginate/polyacrylamide double-network embedded with various mesoporous silica particles, followed by pre-stretching and fixation. Our findings show that hydrogels embedded with high aspect-ratio rod-shaped mesoporous silica microparticles and subjected to multiple pre-stretching cycles in the elastic range, exhibited the most favorable mechanical properties, including a toe region, closely resembling natural tendons. The hydrogels exhibited elastic modulus of 13.3 MPa, tensile strength of 5 MPa, and toughness of 3.5 MJ m, even in its swollen state. An impact absorption test demonstrated the hydrogel's high energy dissipation and damping capacity, effectively absorbing external forces and functioning similarly to tendons. These anisotropic composite hydrogels, with their superior mechanical properties, offer considerable potential for applications in artificial tissue engineering, particularly where tendon-like mechanical characteristics are needed.
肌腱是具有卓越力学性能的各向异性组织,这源于其独特的各向异性结构以及在应力作用下的力学行为。尽管研究主要集中在复制肌腱的各向异性结构和力学性能,但较少有研究考察其具体的力学行为。在此,我们提出一种简单的方法来制备基于钙交联藻酸盐的双网络水凝胶,该水凝胶通过展现各向异性结构、高机械强度和韧性以及拉伸时独特的“趾区”来模拟肌腱。这种模拟肌腱的水凝胶是通过将藻酸盐/聚丙烯酰胺双网络与各种介孔二氧化硅颗粒复合,然后进行预拉伸和固定来制备的。我们的研究结果表明,嵌入高纵横比棒状介孔二氧化硅微粒并在弹性范围内经历多次预拉伸循环的水凝胶表现出最有利的力学性能,包括一个趾区,与天然肌腱极为相似。即使在溶胀状态下,该水凝胶的弹性模量为13.3兆帕,拉伸强度为5兆帕,韧性为3.5兆焦/立方米。冲击吸收试验证明了水凝胶的高能量耗散和阻尼能力,能有效吸收外力,其功能与肌腱相似。这些具有卓越力学性能的各向异性复合水凝胶在人工组织工程应用中具有巨大潜力,特别是在需要类似肌腱力学特性的地方。