Lee Jeong Ah, Park Jaejung, Sagong Man Jae, Ahn Soung Yeoul, Cho Jung-Wook, Lee Seungchul, Kim Hyoung Seop
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Nat Commun. 2025 Jan 22;16(1):931. doi: 10.1038/s41467-025-56267-1.
Optimizing process and heat-treatment parameters of laser powder bed fusion for producing Ti-6Al-4V alloys with high strength and ductility is crucial to meet performance demands in various applications. Nevertheless, inherent trade-offs between strength and ductility render traditional trial-and-error methods inefficient. Herein, we present Pareto active learning framework with targeted experimental validation to efficiently explore vast parameter space of 296 candidates, pinpointing optimal parameters to augment both strength and ductility. All Ti-6Al-4V alloys produced with the pinpointed parameters exhibit higher ductility at similar strength levels and greater strength at similar ductility levels compared to those in previous studies. By improving one property without significantly compromising the other, the framework demonstrates efficiency in overcoming the inherent trade-offs. Ultimately, Ti-6Al-4V alloys with ultimate tensile strength and total elongation of 1190 MPa and 16.5%, respectively, are produced. The proposed framework streamlines discovery of optimal processing parameters and promises accelerated development of high-performance alloys.
优化激光粉末床熔融工艺及热处理参数以生产具有高强度和延展性的Ti-6Al-4V合金对于满足各种应用中的性能需求至关重要。然而,强度和延展性之间固有的权衡使得传统的试错方法效率低下。在此,我们提出了具有针对性实验验证的帕累托主动学习框架,以有效探索296个候选参数的广阔参数空间,确定增强强度和延展性的最佳参数。与先前研究相比,所有采用确定参数生产的Ti-6Al-4V合金在相似强度水平下表现出更高的延展性,在相似延展性水平下表现出更大的强度。通过在不显著牺牲另一性能的情况下改善一种性能,该框架展示了克服固有权衡的效率。最终,生产出了抗拉强度和总伸长率分别为1190 MPa和16.5%的Ti-6Al-4V合金。所提出的框架简化了最佳加工参数的发现,并有望加速高性能合金的开发。