Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
Monash Institute of Medical Engineering (MIME), Monash University, Clayton, Victoria, Australia.
PLoS One. 2019 Aug 29;14(8):e0221198. doi: 10.1371/journal.pone.0221198. eCollection 2019.
Ti-6Al-4V is commonly used in orthopaedic implants, and fabrication techniques such as Powder Bed Fusion (PBF) are becoming increasingly popular for the net-shape production of such implants, as PBF allows for complex customisation and minimal material wastage. Present research into PBF fabricated Ti-6Al-4V focuses on new design strategies (e.g. designing pores, struts or lattices) or mechanical property optimisation through process parameter control-however, it is pertinent to examine the effects of altering PBF process parameters on properties relating to bioactivity. Herein, changes in Ti-6Al-4V microstructure, mechanical properties and surface characteristics were examined as a result of varying PBF process parameters, with a view to understanding how to tune Ti-6Al-4V bio-activity during the fabrication stage itself. The interplay between various PBF laser scan speeds and laser powers influenced Ti-6Al-4V hardness, porosity, roughness and corrosion resistance, in a manner not clearly described by the commonly used volumetric energy density (VED) design variable. Key findings indicate that the relationships between PBF process parameters and ultimate Ti-6Al-4V properties are not straightforward as expected, and that wide ranges of porosity (0.03 ± 0.01% to 32.59 ± 2.72%) and corrosion resistance can be achieved through relatively minor changes in process parameters used-indicating volumetric energy density is a poor predictor of PBF Ti-6Al-4V properties. While variations in electrochemical behaviour with respect to the process parameters used in the PBF fabrication of Ti-6Al-4V have previously been reported, this study presents data regarding important surface characteristics over a large process window, reflecting the full capabilities of current PBF machinery.
钛-6 铝-4 钒通常用于矫形植入物,而粉末床融合(PBF)等制造技术正越来越多地用于此类植入物的净成型生产,因为 PBF 允许进行复杂的定制和最小的材料浪费。目前,对 PBF 制造的钛-6 铝-4 钒的研究集中在新的设计策略(例如设计孔、支柱或晶格)或通过工艺参数控制优化机械性能-然而,检查改变 PBF 工艺参数对与生物活性相关的性能的影响是很重要的。本文研究了由于改变 PBF 工艺参数而导致的钛-6 铝-4 钒微观结构、力学性能和表面特性的变化,以期了解如何在制造阶段本身调整钛-6 铝-4 钒的生物活性。各种 PBF 激光扫描速度和激光功率之间的相互作用影响了钛-6 铝-4 钒的硬度、孔隙率、粗糙度和耐腐蚀性,这种影响方式与常用的体积能量密度(VED)设计变量没有明确描述。主要发现表明,PBF 工艺参数与最终钛-6 铝-4 钒性能之间的关系并不像预期的那样直接,并且通过相对较小的工艺参数变化可以实现广泛的孔隙率(0.03±0.01%至 32.59±2.72%)和耐腐蚀性-这表明体积能量密度是 PBF 钛-6 铝-4 钒性能的一个较差的预测指标。虽然之前已经报道了 PBF 制造钛-6 铝-4 钒过程中工艺参数对电化学行为的变化,但本研究提供了关于大工艺窗口内重要表面特性的数据,反映了当前 PBF 机械的全部能力。