Suppr超能文献

真实世界临床多组学分析揭示了对CDK4/6抑制剂不依赖雌激素受体和依赖雌激素受体的耐药性分歧。

Real-world clinical multi-omics analyses reveal bifurcation of ER-independent and ER-dependent drug resistance to CDK4/6 inhibitors.

作者信息

Kan Zhengyan, Wen Ji, Bonato Vinicius, Webster Jennifer, Yang Wenjing, Ivanov Vladimir, Kim Kimberly Hyunjung, Roh Whijae, Liu Chaoting, Mu Xinmeng Jasmine, Lapira-Miller Jennifer, Oyer Jon, VanArsdale Todd, Rejto Paul A, Bienkowska Jadwiga

机构信息

Oncology Research & Development, Pfizer Inc., San Diego, CA, USA.

Biostatistics, Pfizer Inc., San Diego, CA, USA.

出版信息

Nat Commun. 2025 Jan 22;16(1):932. doi: 10.1038/s41467-025-55914-x.

Abstract

To better understand drug resistance mechanisms to CDK4/6 inhibitors and inform precision medicine, we analyze real-world multi-omics data from 400 HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors plus endocrine therapies, including 200 pre-treatment and 227 post-progression samples. The prevalences of ESR1 and RB1 alterations significantly increase in post-progression samples. Integrative clustering analysis identifies three subgroups harboring different resistance mechanisms: ER driven, ER co-driven and ER independent. The ER independent subgroup, growing from 5% pre-treatment to 21% post-progression, is characterized by down-regulated estrogen signaling and enrichment of resistance markers including TP53 mutations, CCNE1 over-expression and Her2/Basal subtypes. Trajectory inference analyses identify a pseudotime variable strongly correlated with ER independence and disease progression; and revealed bifurcated evolutionary trajectories for ER-independent vs. ER-dependent drug resistance mechanisms. Machine learning models predict therapeutic dependency on ESR1 and CDK4 among ER-dependent tumors and CDK2 dependency among ER-independent tumors, confirmed by experimental validation.

摘要

为了更好地理解对CDK4/6抑制剂的耐药机制并为精准医学提供依据,我们分析了400例接受CDK4/6抑制剂联合内分泌治疗的HR+/HER2-转移性乳腺癌患者的真实世界多组学数据,包括200例治疗前样本和227例进展后样本。ESR1和RB1改变的发生率在进展后样本中显著增加。综合聚类分析确定了三个具有不同耐药机制的亚组:雌激素受体(ER)驱动型、ER共同驱动型和ER非依赖型。ER非依赖型亚组从治疗前的5%增长到进展后的21%,其特征是雌激素信号下调以及包括TP53突变、CCNE1过表达和Her2/基底样亚型在内的耐药标志物富集。轨迹推断分析确定了一个与ER非依赖性和疾病进展密切相关的伪时间变量;并揭示了ER非依赖性与ER依赖性耐药机制的分叉进化轨迹。机器学习模型预测了ER依赖性肿瘤对ESR1和CDK4的治疗依赖性以及ER非依赖性肿瘤对CDK2的依赖性,并通过实验验证得到证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d13/11754447/2bd37600ceff/41467_2025_55914_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验