Suppr超能文献

利用整合冰川水文输出、深度学习和小波变换的混合模型进行增强型径流预测。

Enhanced streamflow forecasting using hybrid modelling integrating glacio-hydrological outputs, deep learning and wavelet transformation.

作者信息

Ougahi Jamal Hassan, Rowan John S

机构信息

UNESCO Centre of Water Law, Policy & Science, University of Dundee, Dundee, UK.

Higher Education Department, Government of the Punjab, Lahore, Pakistan.

出版信息

Sci Rep. 2025 Jan 22;15(1):2762. doi: 10.1038/s41598-025-87187-1.

Abstract

Understanding snow and ice melt dynamics is vital for flood risk assessment and effective water resource management in populated river basins sourced in inaccessible high-mountains. This study provides an AI-enabled hybrid approach integrating glacio-hydrological model outputs (GSM-SOCONT), with different machine learning and deep learning techniques framed as alternative 'computational scenarios, leveraging both physical processes and data-driven insights for enhanced predictive capabilities. The standalone deep learning model (CNN-LSTM), relying solely on meteorological data, outperformed its counterpart machine learning and glacio-hydrological model equivalents. Hybrid models (CNN-LSTM1 to CNN-LSTM15) were trained using meteorological data augmented with glacio-hydrological model outputs representing ice and snow-melt contributions to streamflow. The hybrid model (CNN-LSTM14), using only glacier-derived features, performed best with high NSE (0.86), KGE (0.80), and R (0.93) values during calibration, and the highest NSE (0.83), KGE (0.88), R (0.91), and lowest RMSE (892) and MAE (544) during validation. Finally, a multi-scale analysis using different feature permutations was explored using wavelet transformation theory, integrating these into the final hybrid model (CNN-LSTM19), which significantly enhances predictive accuracy, particularly for high-flow events, as evidenced by improved NSE (from 0.83 to 0.97) and reduced RMSE (from 892 to 442) during validation. The comparative analysis illustrates how AI-enhanced hydrological models improve the accuracy of runoff forecasting and provide more reliable and actionable insights for managing water resources and mitigating flood risks - despite the paucity of direct measurements.

摘要

了解冰雪融化动态对于人口密集的河流流域(其水源来自难以到达的高山地区)的洪水风险评估和有效的水资源管理至关重要。本研究提供了一种基于人工智能的混合方法,将冰川水文模型输出(GSM-SOCONT)与不同的机器学习和深度学习技术相结合,构建为替代的“计算情景”,利用物理过程和数据驱动的见解来增强预测能力。仅依赖气象数据的独立深度学习模型(CNN-LSTM)优于其对应的机器学习和冰川水文模型。混合模型(CNN-LSTM1至CNN-LSTM15)使用气象数据进行训练,并辅以代表冰雪融化对径流贡献的冰川水文模型输出。仅使用冰川衍生特征的混合模型(CNN-LSTM14)在校准期间表现最佳,NSE(0.86)、KGE(0.80)和R(0.93)值较高,在验证期间NSE(0.83)、KGE(0.88)、R(0.91)最高,RMSE(892)和MAE(544)最低。最后,利用小波变换理论探索了使用不同特征排列的多尺度分析,并将其整合到最终的混合模型(CNN-LSTM19)中,这显著提高了预测准确性,特别是对于高流量事件,验证期间NSE(从0.83提高到0.97)和RMSE降低(从892降低到442)证明了这一点。对比分析表明,尽管直接测量数据匮乏,但人工智能增强的水文模型如何提高径流预测的准确性,并为水资源管理和减轻洪水风险提供更可靠且可操作的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73d9/11754805/833f6373380a/41598_2025_87187_Fig1_HTML.jpg

相似文献

本文引用的文献

4
CatBoost for big data: an interdisciplinary review.用于大数据的CatBoost:跨学科综述
J Big Data. 2020;7(1):94. doi: 10.1186/s40537-020-00369-8. Epub 2020 Nov 4.
7
Energy-based wavelet de-noising of hydrologic time series.基于能量的水文时间序列小波去噪
PLoS One. 2014 Oct 31;9(10):e110733. doi: 10.1371/journal.pone.0110733. eCollection 2014.
8
Conditional variable importance for random forests.随机森林的条件变量重要性
BMC Bioinformatics. 2008 Jul 11;9:307. doi: 10.1186/1471-2105-9-307.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验