Suppr超能文献

一种识别工业机器人几何参数的新方法。

A new method for recognizing geometric parameters of industrial robots.

作者信息

Kou Bin, Zhang Yi

机构信息

School of Software, Taiyuan University of Technology, Taiyuan, China.

Xi'an BZT Electronic Technology Co., Xi'an, China.

出版信息

Sci Rep. 2025 Jan 22;15(1):2810. doi: 10.1038/s41598-025-86971-3.

Abstract

Intelligent algorithms that are commonly used to obtain errors in the geometric parameters of industrial robots have a low accuracy, easily fall into the local optimal solution, and involve complicated coding such that they are unsuitable for use in engineering. In this study, we first apply the D-H method to establish a model of error in industrial robots, and then use the set of errors in their geometric parameters as the objective function. Following this, we improve the accuracy of global optimization of the particle swarm optimization (PSO) algorithm by drawing on the wandering behavior of the wolf pack algorithm and hybridization behavior of the genetic algorithm. We balance the convergence of the PSO algorithm by using a linearly diminishing weight. This leads to an improved PSO algorithm that can accurately determine errors in the geometric parameters of industrial robots. We compared our improve PSO algorithm with commonly used particle swarm algorithms, and the results showed that the former had a higher accuracy of convergence on average. Moreover, the errors in the geometric parameters obtained by the improved PSO algorithm can enhance the accuracy of localization of errors in industrial robots.

摘要

常用于获取工业机器人几何参数误差的智能算法精度较低,容易陷入局部最优解,且编码复杂,不适用于工程应用。在本研究中,我们首先应用D-H方法建立工业机器人的误差模型,然后将其几何参数的误差集作为目标函数。接着,我们借鉴狼群算法的游荡行为和遗传算法的杂交行为,提高粒子群优化(PSO)算法全局优化的精度。我们使用线性递减权重来平衡PSO算法的收敛性。这产生了一种改进的PSO算法,它可以准确地确定工业机器人几何参数的误差。我们将改进的PSO算法与常用的粒子群算法进行了比较,结果表明前者平均具有更高的收敛精度。此外,改进的PSO算法获得的几何参数误差可以提高工业机器人误差定位的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32e3/11754435/84278f5548e0/41598_2025_86971_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验