Suppr超能文献

磁共振直线加速器:人工智能与自动化的作用

MR-linac: role of artificial intelligence and automation.

作者信息

Psoroulas Serena, Paunoiu Alina, Corradini Stefanie, Hörner-Rieber Juliane, Tanadini-Lang Stephanie

机构信息

Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.

Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.

出版信息

Strahlenther Onkol. 2025 Mar;201(3):298-305. doi: 10.1007/s00066-024-02358-9. Epub 2025 Jan 22.

Abstract

The integration of artificial intelligence (AI) into radiotherapy has advanced significantly during the past 5 years, especially in terms of automating key processes like organ at risk delineation and treatment planning. These innovations have enhanced consistency, accuracy, and efficiency in clinical practice. Magnetic resonance (MR)-guided linear accelerators (MR-linacs) have greatly improved treatment accuracy and real-time plan adaptation, particularly for tumors near radiosensitive organs. Despite these improvements, MR-guided radiotherapy (MRgRT) remains labor intensive and time consuming, highlighting the need for AI to streamline workflows and support rapid decision-making. Synthetic CTs from MR images and automated contouring and treatment planning will reduce manual processes, thus optimizing treatment times and expanding access to MR-linac technology. AI-driven quality assurance will ensure patient safety by predicting machine errors and validating treatment delivery. Advances in intrafractional motion management will increase the accuracy of treatment, and the integration of imaging biomarkers for outcome prediction and early toxicity assessment will enable more precise and effective treatment strategies.

摘要

在过去五年中,人工智能(AI)与放射治疗的整合取得了显著进展,尤其是在关键流程自动化方面,如危及器官勾画和治疗计划。这些创新提高了临床实践中的一致性、准确性和效率。磁共振(MR)引导的直线加速器(MR直线加速器)极大地提高了治疗准确性和实时计划适应性,特别是对于靠近放射敏感器官的肿瘤。尽管有这些改进,MR引导放射治疗(MRgRT)仍然劳动强度大且耗时,这凸显了人工智能简化工作流程和支持快速决策的必要性。从MR图像生成的合成CT以及自动轮廓勾画和治疗计划将减少手工操作,从而优化治疗时间并扩大MR直线加速器技术的应用范围。人工智能驱动的质量保证将通过预测机器错误和验证治疗交付来确保患者安全。分次内运动管理的进展将提高治疗准确性,将成像生物标志物整合用于结果预测和早期毒性评估将实现更精确有效的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/890f/11839841/157ec2502c57/66_2024_2358_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验