Zhou Kai, Liu Heng, Liu Zhongliang, Li Xiaoning, Wang Nana, Wang Mingyue, Xue Tianrui, Shen Yongjun, Li Hao, Li Huihui, Li Chunzhong
Key Laboratory for Ultrafine Materials of Ministry of Education School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
Angew Chem Int Ed Engl. 2025 Apr 1;64(14):e202422707. doi: 10.1002/anie.202422707. Epub 2025 Jan 31.
The development of efficient and durable oxygen evolution reaction (OER) catalysts is crucial for advancing proton exchange membrane water electrolysis (PEMWE) technology, especially in the pursuit of non-iridium alternatives. Herein, we report a Zn, W co-doped RuZnWO (RZW) ternary oxide catalyst that exhibits a low overpotential of 200 mV and remarkable stability for over 4000 hours at 10 mA cm in 0.1 M HClO. The incorporation of highly electronegative W facilitates the efficient capture of electrons released from the sacrificial Zn species during OER, and subsequently mediated to Ru sites. The observed enhancement in electron density within the stable Ru-O-W motifs substantially improves the anti-overoxidation properties of the Ru active sites. Our findings highlight the importance of strategic metal doping in modulating the electronic structure of OER catalysts during operation, thereby facilitating the development of practical and long-lasting water electrolysis technologies.
开发高效耐用的析氧反应(OER)催化剂对于推动质子交换膜水电解(PEMWE)技术至关重要,特别是在寻求非铱替代物方面。在此,我们报道了一种Zn、W共掺杂的RuZnWO(RZW)三元氧化物催化剂,该催化剂在0.1 M HClO中,在10 mA cm下表现出200 mV的低过电位以及超过4000小时的显著稳定性。高电负性W的掺入有助于在OER过程中有效捕获牺牲性Zn物种释放的电子,并随后介导至Ru位点。在稳定的Ru-O-W基序中观察到的电子密度增强显著改善了Ru活性位点的抗过氧化性能。我们的研究结果突出了在操作过程中通过策略性金属掺杂来调节OER催化剂电子结构的重要性,从而促进实用且持久的水电解技术的发展。