Wang Enshi, Khan Fakhri Alam
School of Digital Art, Wuxi Vocational College of Science and Technology, Wuxi, Jiangsu, China.
Information and Computer Science Department, King Fahad University of Petroleum and Minerals, Dhahran, Saudi Arabia.
PeerJ Comput Sci. 2024 Dec 20;10:e2596. doi: 10.7717/peerj-cs.2596. eCollection 2024.
Given the integration of color emotion space information from multiple feature sources in multimodal recognition systems, effectively fusing this information presents a significant challenge. This article proposes a three-dimensional (3D) color-emotion space visual feature extraction model for multimodal data integration based on an improved Gaussian mixture model to address these issues. Unlike traditional methods, which often struggle with redundant information and high model complexity, our approach optimizes feature fusion by employing entropy and visual feature sequences. By integrating machine vision with six activation functions and utilizing multiple aesthetic features, the proposed method exhibits strong performance in a high emotion mapping accuracy (EMA) of 92.4%, emotion recognition precision (ERP) of 88.35%, and an emotion recognition F1 score (ERFS) of 96.22%. These improvements over traditional approaches highlight the model's effectiveness in reducing complexity while enhancing emotional recognition accuracy, positioning it as a more efficient solution for visual emotion analysis in multimedia applications. The findings indicate that the model significantly enhances emotional recognition accuracy.
鉴于多模态识别系统中来自多个特征源的颜色情感空间信息的整合,有效融合这些信息带来了重大挑战。本文提出了一种基于改进高斯混合模型的用于多模态数据整合的三维(3D)颜色-情感空间视觉特征提取模型,以解决这些问题。与传统方法不同,传统方法常常在冗余信息和高模型复杂度方面存在困难,我们的方法通过采用熵和视觉特征序列来优化特征融合。通过将机器视觉与六个激活函数相结合并利用多个美学特征,所提出的方法在92.4%的高情感映射准确率(EMA)、88.35%的情感识别精度(ERP)和96.22%的情感识别F1分数(ERFS)方面表现出强大的性能。与传统方法相比的这些改进突出了该模型在降低复杂度同时提高情感识别准确率方面的有效性,使其成为多媒体应用中视觉情感分析的更高效解决方案。研究结果表明该模型显著提高了情感识别准确率。