Suppr超能文献

预测网购成瘾:决策树模型分析

Predicting online shopping addiction: a decision tree model analysis.

作者信息

Wan Xueli, Zeng Jie, Zhang Ling

机构信息

College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China.

出版信息

Front Psychol. 2025 Jan 8;15:1462376. doi: 10.3389/fpsyg.2024.1462376. eCollection 2024.

Abstract

BACKGROUND

Online shopping addiction has been identified as a detrimental behavioral pattern, necessitating the development of effective mitigation strategies.

OBJECTIVE

This study aims to elucidate the psychological mechanisms underlying online shopping addiction through constructing and analyzing a C5.0 decision tree model, with the ultimate goal of facilitating more efficient intervention methods.

METHODOLOGY

A comprehensive survey was conducted among 457 university students in Sichuan, China, utilizing validated psychometric instruments, including the Online shopping addiction Scale, College Academic Self-Efficacy Scale, College Students' Sense of Life Meaning Scale, Negative Emotion Scale, Social Anxiety Scale, Sense of Place Scale, and Tuckman Procrastination Scale.

RESULTS

The predictive model demonstrated an accuracy of 79.45%, identifying six key factors predictive of online shopping addiction: academic procrastination (49.0%), sense of place (26.1%), social anxiety (10.1%), college students' sense of life meaning (7.0%), negative emotions (7.0%), and college academic self-efficacy (0.9%).

CONCLUSION

This pioneering study in online shopping addictiononline shopping addiction prediction offers valuable tools and research support for identifying and understanding this behavioral addiction, potentially informing future intervention strategies and research directions. This study provides research support for improving people's understanding and management of behavioral addictions and promoting healthier online shopping habits.

摘要

背景

网购成瘾已被确认为一种有害的行为模式,因此需要制定有效的缓解策略。

目的

本研究旨在通过构建和分析C5.0决策树模型来阐明网购成瘾背后的心理机制,最终目标是促进更有效的干预方法。

方法

在中国四川的457名大学生中进行了一项综合调查,使用了经过验证的心理测量工具,包括网购成瘾量表、大学学业自我效能量表、大学生生命意义感量表、负面情绪量表、社交焦虑量表、场所感量表和塔克曼拖延量表。

结果

预测模型的准确率为79.45%,确定了六个预测网购成瘾的关键因素:学业拖延(49.0%)、场所感(26.1%)、社交焦虑(10.1%)、大学生生命意义感(7.0%)、负面情绪(7.0%)和大学学业自我效能感(0.9%)。

结论

这项关于网购成瘾预测的开创性研究为识别和理解这种行为成瘾提供了有价值的工具和研究支持,可能为未来的干预策略和研究方向提供参考。本研究为提高人们对行为成瘾的理解和管理以及促进更健康的网购习惯提供了研究支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33dd/11750794/5b328110064a/fpsyg-15-1462376-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验