Wang Lina, Li Xiang, Zhang Zhengbin, Yuan Haoxun, Lu Pengfei, Li Yaru
School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, China.
Institute of Surveying and Mapping, Information Engineering University, Zhengzhou, China.
Front Public Health. 2025 Jan 8;12:1432645. doi: 10.3389/fpubh.2024.1432645. eCollection 2024.
The accuracy of spatial clustering detection is crucial for public health policy development and identifying etiological clues. Circular and flexibly-shaped scan statistics are widely used for disease cluster detection, but differences in results arise mainly due to parameter sensitivity and variations in the scanning window shapes. This study aims to analyze the impact of parameter settings on the results of these methods and compare their performance in disease clustering detection. Using tuberculosis data from Wuhan, China (2015-2019), the study identified the optimal parameter settings-MSWS and -value-for each method to ensure accurate clustering. A comprehensive comparison was made using two quantitative indicators, the LLR value and cluster size, as well as clustering visualizations. The results show that the optimal MSWS parameter for SaTScan is determined through a Gini coefficient-based stepwise-threshold-reduction approach, while a -value of 30 is ideal for FleXScan. SaTScan tends to produce more regular clusters, while FleXScan often generates more irregular clusters. FleXScan detects fewer clusters but with higher LLR values and larger average cluster sizes, although the maximum cluster size is smaller. These findings provide valuable insights for optimizing disease clustering detection methods and enhancing public health interventions.
空间聚集性检测的准确性对于公共卫生政策制定和确定病因线索至关重要。圆形和灵活形状的扫描统计方法被广泛用于疾病聚集性检测,但结果差异主要源于参数敏感性和扫描窗口形状的变化。本研究旨在分析参数设置对这些方法结果的影响,并比较它们在疾病聚集性检测中的性能。利用中国武汉(2015 - 2019年)的结核病数据,该研究为每种方法确定了最佳参数设置——移动空间扫描窗口(MSWS)和p值,以确保准确聚类。使用两个定量指标(对数似然比(LLR)值和聚类大小)以及聚类可视化进行了全面比较。结果表明,空间扫描统计(SaTScan)的最佳MSWS参数通过基于基尼系数的逐步阈值降低方法确定,而对于灵活扫描统计(FleXScan),p值为30是理想的。SaTScan倾向于产生更规则的聚类,而FleXScan通常生成更不规则的聚类。FleXScan检测到的聚类较少,但具有较高的LLR值和较大的平均聚类大小,尽管最大聚类大小较小。这些发现为优化疾病聚集性检测方法和加强公共卫生干预提供了有价值的见解。