Suppr超能文献

用于检测不规则形状聚类的空间扫描统计中基尼系数的评估。

Evaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters.

作者信息

Kim Jiyu, Jung Inkyung

机构信息

Department of Biostatistics and Medical Informatics, Yonsei University College of Medicine, Seoul, Korea.

出版信息

PLoS One. 2017 Jan 27;12(1):e0170736. doi: 10.1371/journal.pone.0170736. eCollection 2017.

Abstract

Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient for detecting irregularly shaped clusters through a simulation study. The Gini coefficient, the use of which in spatial scan statistics was recently proposed, is a criterion measure for optimizing the maximum reported cluster size. Our simulation study results showed that using the Gini coefficient works better than the original spatial scan statistic for identifying irregularly shaped clusters, by reporting an optimized and refined collection of clusters rather than a single larger cluster. We have provided a real data example that seems to support the simulation results. We think that using the Gini coefficient in spatial scan statistics can be helpful for the detection of irregularly shaped clusters.

摘要

具有圆形或椭圆形扫描窗口的空间扫描统计方法通常用于各种应用中的聚类检测,例如从流行病学数据中识别地理疾病聚类。有人指出,该方法在正确识别非紧凑、任意形状的聚类时可能存在困难。在本文中,我们通过模拟研究评估了基尼系数用于检测不规则形状聚类的情况。基尼系数最近被提出用于空间扫描统计,它是一种用于优化报告的最大聚类大小的标准度量。我们的模拟研究结果表明,使用基尼系数在识别不规则形状聚类方面比原始空间扫描统计方法效果更好,它能报告一组经过优化和细化的聚类,而不是单个更大的聚类。我们提供了一个实际数据示例,似乎支持了模拟结果。我们认为在空间扫描统计中使用基尼系数有助于检测不规则形状的聚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77e1/5271318/8da55950ae16/pone.0170736.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验