Suppr超能文献

基于病理学家注释的注意力诱导以改进全切片病理图像分类器。

Attention induction based on pathologist annotations for improving whole slide pathology image classifier.

作者信息

Koga Ryoichi, Yokota Tatsuya, Arihiro Koji, Hontani Hidekata

机构信息

Department of Computer Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya-shi, Aichi 466-8555, Japan.

Department of Anatomical Pathology, Hiroshima University Hospital, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.

出版信息

J Pathol Inform. 2024 Nov 27;16:100413. doi: 10.1016/j.jpi.2024.100413. eCollection 2025 Jan.

Abstract

We propose a method of to improve an attention mechanism in a whole slide image (WSI) classifier. Generally, only some regions in a WSI are useful for lesion classification, and the WSI classifier is required to find and focus on such regions for the classification. Multiple instance learning and hierarchical representation learning are widely employed for WSI processing and both use attention mechanisms to automatically find the useful regions and then conduct the class prediction. Here, it is impractical to collect a large number of WSIs, and when the attention mechanism is trained with a small number of training WSIs, the resultant attention often fails to focus on the useful regions. To improve the attention mechanism without increasing the number of training WSIs, we propose a method of attention induction for a hierarchical representation of WSI that guides attention to focus on the regions useful for lesion classification based on pathologist's coarse annotations. Our experimental results demonstrate that the proposed method improves the attention mechanism, thereby enhancing the performance of WSI classification.

摘要

我们提出了一种改进全切片图像(WSI)分类器中注意力机制的方法。一般来说,WSI中只有一些区域对病变分类有用,WSI分类器需要找到并聚焦于这些区域进行分类。多实例学习和层次表示学习被广泛用于WSI处理,并且两者都使用注意力机制来自动找到有用区域,然后进行类别预测。在此,收集大量WSI是不切实际的,并且当使用少量训练WSI训练注意力机制时,所得注意力往往无法聚焦于有用区域。为了在不增加训练WSI数量的情况下改进注意力机制,我们提出了一种用于WSI层次表示的注意力诱导方法,该方法基于病理学家的粗略注释引导注意力聚焦于对病变分类有用的区域。我们的实验结果表明,所提出的方法改进了注意力机制,从而提高了WSI分类的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5018/11750489/2d3e002d2891/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验