Suppr超能文献

基于强化学习的双注意力模型用于组织学全切片图像分类

Dual attention model with reinforcement learning for classification of histology whole-slide images.

作者信息

Raza Manahil, Awan Ruqayya, Bashir Raja Muhammad Saad, Qaiser Talha, Rajpoot Nasir M

机构信息

Tissue Image Analytics Centre, University of Warwick, Coventry, United Kingdom.

Tissue Image Analytics Centre, University of Warwick, Coventry, United Kingdom; The Alan Turing Institute, London, United Kingdom.

出版信息

Comput Med Imaging Graph. 2024 Dec;118:102466. doi: 10.1016/j.compmedimag.2024.102466. Epub 2024 Nov 19.

Abstract

Digital whole slide images (WSIs) are generally captured at microscopic resolution and encompass extensive spatial data (several billions of pixels per image). Directly feeding these images to deep learning models is computationally intractable due to memory constraints, while downsampling the WSIs risks incurring information loss. Alternatively, splitting the WSIs into smaller patches (or tiles) may result in a loss of important contextual information. In this paper, we propose a novel dual attention approach, consisting of two main components, both inspired by the visual examination process of a pathologist: The first soft attention model processes a low magnification view of the WSI to identify relevant regions of interest (ROIs), followed by a custom sampling method to extract diverse and spatially distinct image tiles from the selected ROIs. The second component, the hard attention classification model further extracts a sequence of multi-resolution glimpses from each tile for classification. Since hard attention is non-differentiable, we train this component using reinforcement learning to predict the location of the glimpses. This approach allows the model to focus on essential regions instead of processing the entire tile, thereby aligning with a pathologist's way of diagnosis. The two components are trained in an end-to-end fashion using a joint loss function to demonstrate the efficacy of the model. The proposed model was evaluated on two WSI-level classification problems: Human epidermal growth factor receptor 2 (HER2) scoring on breast cancer histology images and prediction of Intact/Loss status of two Mismatch Repair (MMR) biomarkers from colorectal cancer histology images. We show that the proposed model achieves performance better than or comparable to the state-of-the-art methods while processing less than 10% of the WSI at the highest magnification and reducing the time required to infer the WSI-level label by more than 75%. The code is available at github.

摘要

数字全玻片图像(WSIs)通常以微观分辨率采集,包含大量空间数据(每张图像数十亿像素)。由于内存限制,将这些图像直接输入深度学习模型在计算上是难以处理的,而对WSIs进行下采样则有信息丢失的风险。或者,将WSIs分割成较小的图像块(或切片)可能会导致重要上下文信息的丢失。在本文中,我们提出了一种新颖的双重注意力方法,它由两个主要部分组成,两者都受到病理学家视觉检查过程的启发:第一个软注意力模型处理WSI的低倍视图以识别相关的感兴趣区域(ROIs),然后采用一种定制的采样方法从选定的ROIs中提取多样且空间上不同的图像切片。第二个部分,硬注意力分类模型进一步从每个切片中提取多分辨率的 glimpses 序列进行分类。由于硬注意力是不可微的,我们使用强化学习来训练这个部分以预测 glimpses 的位置。这种方法使模型能够专注于关键区域而不是处理整个切片,从而与病理学家的诊断方式相一致。这两个部分使用联合损失函数以端到端的方式进行训练,以证明模型的有效性。所提出的模型在两个WSI级别的分类问题上进行了评估:乳腺癌组织学图像上的人类表皮生长因子受体2(HER2)评分以及结直肠癌组织学图像中两种错配修复(MMR)生物标志物的完整/缺失状态预测。我们表明,所提出的模型在以最高放大倍数处理不到10%的WSI的同时,实现了比现有方法更好或相当的性能,并将推断WSI级标签所需的时间减少了75%以上。代码可在github上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验