Suppr超能文献

计算机化自我报告病史采集及HEAR评分在急性胸痛患者心脏事件安全早期排除中的应用:CLEOS-CPDS前瞻性队列研究

Performance of computerized self-reported medical history taking and HEAR score for safe early rule-out of cardiac events in acute chest pain patients: the CLEOS-CPDS prospective cohort study.

作者信息

Brandberg Helge, Schierenbeck Fanny, Sundberg Carl Johan, Koch Sabine, Spaak Jonas, Kahan Thomas

机构信息

Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, SE-182 88 Stockholm, Sweden.

Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.

出版信息

Eur Heart J Digit Health. 2024 Nov 12;6(1):104-114. doi: 10.1093/ehjdh/ztae087. eCollection 2025 Jan.

Abstract

AIMS

A simplified version of the history, electrocardiogram, age, risk factors, troponin (HEART) score, excluding troponin, has been proposed to rule-out major adverse cardiac events (MACEs). Computerized history taking (CHT) provides a systematic and automated method to obtain information necessary to calculate the HEAR score. We aimed to evaluate the efficacy and diagnostic accuracy of CHT in calculating the HEAR score for predicting MACE.

METHODS AND RESULTS

Prospective study including clinically stable adults presenting with chest pain at the emergency department (ED) of Danderyd University Hospital (Stockholm, Sweden), in 2017-19. Participants entered their medical histories on touchscreen tablets using CHT software. The HEAR and HEART scores were calculated from CHT data. Thirty-day MACE and acute coronary syndrome (ACS) outcomes were retrieved, and the diagnostic accuracy was assessed. Logistic regression was used to determine the most predictive components of the HEAR score. Among 1000 patients, HEART and HEAR scores could be calculated from CHT data in 648 and 666 cases, respectively, with negative predictive values [95% confidence interval (CI)] of 0.98 (0.97-0.99) and 0.99 (0.96-1.00). Two patients with HEAR score <2 experienced a 30-day MACE. The age [odds ratio (OR) 2.75, 95% CI 1.62-4.66] and history (OR 2.38, 95% CI 1.52-3.71) components of the HEAR score were most predictive of MACE. Acute coronary syndrome outcomes provided similar results.

CONCLUSION

The HEAR score acquired by CHT identifies very-low-risk patients with chest pain in the ED, safely ruling out ACS and MACE. This highlights the value of computerized history taking by patients, which may reduce unnecessary tests and hospital admissions.

TRIAL REGISTRATION

ClinicalTrials.gov NCT03439449.

摘要

目的

已提出一种简化版的病史、心电图、年龄、危险因素、肌钙蛋白(HEART)评分(不包括肌钙蛋白),用于排除主要不良心脏事件(MACE)。计算机化病史采集(CHT)提供了一种系统且自动化的方法来获取计算HEAR评分所需的信息。我们旨在评估CHT在计算用于预测MACE的HEAR评分时的有效性和诊断准确性。

方法与结果

这是一项前瞻性研究,纳入了2017 - 19年在瑞典斯德哥尔摩丹德吕德大学医院急诊科就诊、临床表现稳定的胸痛成年患者。参与者使用CHT软件在触摸屏平板电脑上输入他们的病史。根据CHT数据计算HEAR和HEART评分。检索30天MACE和急性冠状动脉综合征(ACS)结局,并评估诊断准确性。使用逻辑回归确定HEAR评分中最具预测性的组成部分。在1000例患者中,分别有648例和666例可根据CHT数据计算出HEART和HEAR评分,其阴性预测值[95%置信区间(CI)]分别为0.98(0.97 - 0.99)和0.99(0.96 - 1.00)。2例HEAR评分<2的患者发生了30天MACE。HEAR评分的年龄[比值比(OR)2.75,95%CI 1.62 - 4.66]和病史(OR 2.38,95%CI 1.52 - 3.71)组成部分对MACE的预测性最强。急性冠状动脉综合征结局提供了类似的结果。

结论

通过CHT获得的HEAR评分可识别急诊科中胸痛风险极低的患者,安全地排除ACS和MACE。这凸显了患者进行计算机化病史采集的价值,这可能会减少不必要的检查和住院。

试验注册

ClinicalTrials.gov NCT03439449。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/870b/11750193/580e1b7523ed/ztae087_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验