Luo Zhi-Hong, Zheng Min, Zhou Ming-Xia, Sheng Xi-Tong, Chen Xiao-Li, Shao Jiao-Jing, Wang Tian-Shuai, Zhou Guangmin
School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
Adv Mater. 2025 Mar;37(9):e2417321. doi: 10.1002/adma.202417321. Epub 2025 Jan 23.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator. The hydroxylated MXene shifts the p-band center of the surface O on PSN closer to the Fermi level, leading to strong absorptive/catalytic effect for polysulfides and thus fast polysulfide transformation kinetics. Together with the ion/electron bi-conduction function of PSN/MXene, the Li-S batteries deliver high initial capacity of 1443 mAh g at 0.1 C, low-capacity decay rate of 0.049% per cycle over 800 cycles at 2 C, and excellent rate capability. At a high sulfur loading of 5.2 mg cm, the cells present higher areal specific capacity than commercial lithium ion batteries. The pouch cells with lean electrolyte (E/S = 3.9 µL mg) yield a capacity of 2-Ah at 100 mA, high energy density and excellent cycling stability. This contribution opens up new avenues for expanding application of 2D nanofluidics in electrochemical energy storage and conversion.
锂硫(Li-S)电池的商业化在很大程度上受到多硫化物穿梭和缓慢动力学的限制。在此,开发了由交替堆叠的多孔二氧化硅纳米片(PSN)和TiCT-MXene组成的二维纳米通道夹层。具有选择性阳离子传输特性的二维纳米通道促进锂离子快速传输,同时阻止多硫化物阴离子穿过隔膜迁移。羟基化的MXene使PSN表面O的p带中心更接近费米能级,导致对多硫化物有很强的吸附/催化作用,从而实现快速的多硫化物转化动力学。结合PSN/MXene的离子/电子双传导功能,Li-S电池在0.1 C下具有1443 mAh g的高初始容量,在2 C下800次循环中容量衰减率低至每循环0.049%,并具有出色的倍率性能。在5.2 mg cm的高硫负载下,电池的面积比容量高于商用锂离子电池。采用贫电解质(E/S = 3.9 µL mg)的软包电池在100 mA下容量为2 Ah,具有高能量密度和出色的循环稳定性。这一成果为二维纳米流体在电化学能量存储和转换中的应用拓展开辟了新途径。