面向人工智能开发者的肿瘤组织病理学“术语表”。
The tumour histopathology "glossary" for AI developers.
作者信息
Mandal Soham, Baker Ann-Marie, Graham Trevor A, Bräutigam Konstantin
机构信息
Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom.
Data Science Team, Institute of Cancer Research, London, United Kingdom.
出版信息
PLoS Comput Biol. 2025 Jan 23;21(1):e1012708. doi: 10.1371/journal.pcbi.1012708. eCollection 2025 Jan.
The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective translation of these computational methods requires computational researchers to have at least a basic understanding of histopathology. In this work, we aim to bridge that gap by introducing essential histopathology concepts to support AI developers in their research. We cover the defining features of key cell types, including epithelial, stromal, and immune cells. The concepts of malignancy, precursor lesions, and the tumour microenvironment (TME) are discussed and illustrated. To enhance understanding, we also introduce foundational histopathology techniques, such as conventional staining with hematoxylin and eosin (HE), antibody staining by immunohistochemistry, and including the new multiplexed antibody staining methods. By providing this essential knowledge to the computational community, we aim to accelerate the development of AI algorithms for cancer research.
人工智能(AI)和深度学习(DL)的应用正在推动癌症研究取得重大进展,特别是在分析组织病理学图像以获得预后和治疗预测见解方面。然而,要有效应用这些计算方法,计算研究人员至少需要对组织病理学有基本的了解。在这项工作中,我们旨在通过引入基本的组织病理学概念来弥合这一差距,以支持人工智能开发者进行研究。我们涵盖了关键细胞类型的定义特征,包括上皮细胞、基质细胞和免疫细胞。讨论并举例说明了恶性肿瘤、前驱病变和肿瘤微环境(TME)的概念。为了增进理解,我们还介绍了基础组织病理学技术,如苏木精和伊红(HE)常规染色、免疫组织化学抗体染色,以及新的多重抗体染色方法。通过向计算领域的研究人员提供这些基本知识,我们旨在加速用于癌症研究的人工智能算法的开发。