Suppr超能文献

人工智能在X射线成像和放射治疗中的应用描述性概述。

Descriptive overview of AI applications in x-ray imaging and radiotherapy.

作者信息

Damilakis John, Stratakis John

机构信息

School of Medicine, University of Crete, Heraklion, Greece.

University Hospital of Heraklion, Crete, Greece.

出版信息

J Radiol Prot. 2024 Dec 27;44(4). doi: 10.1088/1361-6498/ad9f71.

Abstract

Artificial intelligence (AI) is transforming medical radiation applications by handling complex data, learning patterns, and making accurate predictions, leading to improved patient outcomes. This article examines the use of AI in optimising radiation doses for x-ray imaging, improving radiotherapy outcomes, and briefly addresses the benefits, challenges, and limitations of AI integration into clinical workflows. In diagnostic radiology, AI plays a pivotal role in optimising radiation exposure, reducing noise, enhancing image contrast, and lowering radiation doses, especially in high-dose procedures like computed tomography (CT). Deep learning (DL)-powered CT reconstruction methods have already been incorporated into clinical routine. Moreover, AI-powered methodologies have been developed to provide real-time, patient-specific radiation dose estimates. These AI-driven tools have the potential to streamline workflows and potentially become integral parts of imaging practices. In radiotherapy, AI's ability to automate and enhance the precision of treatment planning is emphasised. Traditional methods, such as manual contouring, are time-consuming and prone to variability. AI-driven techniques, particularly DL models, are automating the segmentation of organs and tumours, improving the accuracy of radiation delivery, and minimising damage to healthy tissues. Moreover, AI supports adaptive radiotherapy, allowing continuous optimisation of treatment plans based on changes in a patient's anatomy over time, ensuring the highest accuracy in radiation delivery and better therapeutic outcomes. Some of these methods have been validated and integrated into radiation treatment systems, while others are not yet ready for routine clinical use mainly due to challenges in validation, particularly ensuring reliability across diverse patient populations and clinical settings. Despite the potential of AI, there are challenges in fully integrating these technologies into clinical practice. Issues such as data protection, privacy, data quality, model validation, and the need for large and diverse datasets are crucial to ensuring the reliability of AI systems.

摘要

人工智能(AI)正在通过处理复杂数据、学习模式并做出准确预测来改变医学放射应用,从而改善患者治疗效果。本文探讨了人工智能在优化X射线成像辐射剂量、改善放射治疗效果方面的应用,并简要阐述了将人工智能集成到临床工作流程中的益处、挑战和局限性。在诊断放射学中,人工智能在优化辐射暴露、降低噪声、增强图像对比度以及降低辐射剂量方面发挥着关键作用,尤其是在计算机断层扫描(CT)等高剂量检查中。基于深度学习(DL)的CT重建方法已被纳入临床常规。此外,还开发了人工智能驱动的方法来提供实时、针对患者的辐射剂量估计。这些由人工智能驱动的工具有可能简化工作流程,并有可能成为成像实践中不可或缺的一部分。在放射治疗中,人工智能自动化和提高治疗计划精度的能力得到了强调。传统方法,如手动勾勒轮廓,既耗时又容易出现差异。人工智能驱动的技术,特别是深度学习模型,正在实现器官和肿瘤分割的自动化,提高放射治疗的准确性,并将对健康组织的损害降至最低。此外,人工智能支持自适应放射治疗,允许根据患者解剖结构随时间的变化持续优化治疗计划,确保放射治疗的最高准确性和更好的治疗效果。其中一些方法已经得到验证并集成到放射治疗系统中,而其他一些方法尚未准备好用于常规临床使用,主要是由于验证方面的挑战,特别是要确保在不同患者群体和临床环境中的可靠性。尽管人工智能具有潜力,但要将这些技术完全集成到临床实践中仍存在挑战。数据保护、隐私、数据质量、模型验证以及对大量多样数据集的需求等问题对于确保人工智能系统的可靠性至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验