Suppr超能文献

纳米抗体筛选及机器学习辅助鉴定针对新冠病毒变异株的仅重链抗SARS-CoV-2中和抗体

Nanobody screening and machine learning guided identification of cross-variant anti-SARS-CoV-2 neutralizing heavy-chain only antibodies.

作者信息

McIlroy Peter R, Pham Le Thanh Mai, Sheffield Thomas, Stefan Maxwell A, Thatcher Christine E, Jaryenneh James, Schwedler Jennifer L, Sinha Anupama, Sumner Christopher A, Jones Iris K A, Won Stephen, Bruneau Ryan C, Weilhammer Dina R, Liu Zhuoming, Whelan Sean, Negrete Oscar A, Sale Kenneth L, Harmon Brooke

机构信息

Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America.

Bioresource and Environmental Security, Sandia National Laboratories, Livermore, California, United States of America.

出版信息

PLoS Pathog. 2025 Jan 23;21(1):e1012903. doi: 10.1371/journal.ppat.1012903. eCollection 2025 Jan.

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to persist, demonstrating the risks posed by emerging infectious diseases to national security, public health, and the economy. Development of new vaccines and antibodies for emerging viral threats requires substantial resources and time, and traditional development platforms for vaccines and antibodies are often too slow to combat continuously evolving immunological escape variants, reducing their efficacy over time. Previously, we designed a next-generation synthetic humanized nanobody (Nb) phage display library and demonstrated that this library could be used to rapidly identify highly specific and potent neutralizing heavy chain-only antibodies (HCAbs) with prophylactic and therapeutic efficacy in vivo against the original SARS-CoV-2. In this study, we used a combination of high throughput screening and machine learning (ML) models to identify HCAbs with potent efficacy against SARS-CoV-2 viral variants of interest (VOIs) and concern (VOCs). To start, we screened our highly diverse Nb phage display library against several pre-Omicron VOI and VOC receptor binding domains (RBDs) to identify panels of cross-reactive HCAbs. Using HCAb affinity for SARS-CoV-2 VOI and VOCs (pre-Omicron variants) and model features from other published data, we were able to develop a ML model that successfully identified HCAbs with efficacy against Omicron variants, independent of our experimental biopanning workflow. This biopanning informed ML approach reduced the experimental screening burden by 78% to 90% for the Omicron BA.5 and Omicron BA.1 variants, respectively. The combined approach can be applied to other emerging viruses with pandemic potential to rapidly identify effective therapeutic antibodies against emerging variants.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)持续存在,凸显了新发传染病对国家安全、公共卫生和经济构成的风险。开发针对新发病毒威胁的新型疫苗和抗体需要大量资源和时间,而且传统的疫苗和抗体开发平台往往过于缓慢,无法对抗不断演变的免疫逃逸变异株,随着时间的推移其效力会降低。此前,我们设计了一个下一代合成人源化纳米抗体(Nb)噬菌体展示文库,并证明该文库可用于快速鉴定具有高度特异性和强效的仅重链抗体(HCAbs),这些抗体在体内对原始SARS-CoV-2具有预防和治疗功效。在本研究中,我们结合高通量筛选和机器学习(ML)模型来鉴定对感兴趣的SARS-CoV-2病毒变异株(VOIs)和受关注变异株(VOCs)具有强效功效的HCAbs。首先,我们针对几种奥密克戎变异株出现之前的VOI和VOC受体结合域(RBDs)筛选了我们高度多样化的Nb噬菌体展示文库,以鉴定交叉反应性HCAbs组。利用HCAb对SARS-CoV-2 VOI和VOCs(奥密克戎变异株出现之前的变异株)的亲和力以及其他已发表数据的模型特征,我们能够开发出一个ML模型,该模型成功鉴定出对奥密克戎变异株有效的HCAbs,而与我们的实验生物淘选工作流程无关。这种生物淘选指导的ML方法分别将针对奥密克戎BA.5和奥密克戎BA.1变异株的实验筛选负担降低了78%至90%。这种联合方法可应用于其他具有大流行潜力 的新发病毒,以快速鉴定针对新发变异株的有效治疗性抗体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a801/11793827/d0a2f7171205/ppat.1012903.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验