Ye Junqing, Xu Shuying, Wan Yiyang, Qian Junfeng, Li Xibao, He Mingyang, Chen Qun
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 PR China.
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 PR China.
J Colloid Interface Sci. 2025 May;685:304-320. doi: 10.1016/j.jcis.2025.01.105. Epub 2025 Jan 13.
The development of heterojunctions is a proven strategy to augment the photocatalytic efficiency of materials. However, the enhancement in charge transfer facilitated by a single heterojunction is inherently constrained. To overcome these limitations, we synthesized a dual S-scheme heterojunction ternary composite photocatalyst, CuO/NiAl-LDH@MIL-53(Fe), designed for efficient visible-light-driven hydrogen (H) production. The composite catalyst demonstrated a remarkable H production rate of 2093.9 μmol·g·h, which is 4.0-fold greater than that of pristine CuO (530.5 μmol·g·h), 56.7-fold higher than that of NiAl-LDH (36.9 μmol·g·h), and 5.9-fold superior to the single S-scheme heterojunction NiAl-LDH@MIL-53(Fe) (353.8 μmol·g·h). The improved photocatalytic performance is ascribed to the synergistic electrostatic forces and coordination interactions between MIL-53(Fe) and in-situ grown NiAl-LDH, which establish a closely contacted interface. Additionally, the incorporation of CuO mitigates electron transfer resistance and diminishes the recombination rate of photogenerated charge carriers. The engineered dual S-scheme heterojunction significantly increases the charge transfer pathways for photogenerated charge carriers and introduces minimal interfacial resistance, thus achieving efficient charge transfer. Comprehensive experimental characterizations and density functional theory (DFT) calculations substantiate that the migration of photogenerated electrons adheres to the dual S-scheme heterojunction mechanism. This work provides a design concept that integrates a surface in-situ growth strategy with heterojunction engineering, offering a novel approach for the fabrication of advanced photocatalytic composite materials.
异质结的发展是提高材料光催化效率的一种行之有效的策略。然而,单个异质结促进的电荷转移增强存在内在限制。为了克服这些限制,我们合成了一种双S型异质结三元复合光催化剂CuO/NiAl-LDH@MIL-53(Fe),用于高效可见光驱动产氢。该复合催化剂表现出显著的产氢速率,为2093.9 μmol·g·h,分别是原始CuO(530.5 μmol·g·h)的4.0倍、NiAl-LDH(36.9 μmol·g·h)的56.7倍,以及单S型异质结NiAl-LDH@MIL-53(Fe)(353.8 μmol·g·h)的5.9倍。光催化性能的提高归因于MIL-53(Fe)与原位生长的NiAl-LDH之间的协同静电力和配位相互作用,它们建立了紧密接触的界面。此外,CuO的引入降低了电子转移电阻,减少了光生电荷载流子的复合率。设计的双S型异质结显著增加了光生电荷载流子的电荷转移途径,并引入了最小的界面电阻,从而实现了高效的电荷转移。综合实验表征和密度泛函理论(DFT)计算证实,光生电子的迁移遵循双S型异质结机制。这项工作提供了一种将表面原位生长策略与异质结工程相结合的设计理念,为制备先进的光催化复合材料提供了一种新方法。