Sun Yichen, Liu Xiaolu, Tian Jiazheng, Zhang Zixuan, Li Yang, Xie Yinghui, Hao Mengjie, Chen Zhongshan, Yang Hui, Waterhouse Geoffrey I N, Ma Shengqian, Wang Xiangke
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China.
School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand.
ACS Nano. 2025 Feb 4;19(4):4528-4540. doi: 10.1021/acsnano.4c14192. Epub 2025 Jan 23.
Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV. The FE was ∼100% at industrial-level current densities from 200 to 900 mA·cm. Impressively, O-Ni-N-GC delivered a state-of-the-art FE of >96% at 1 A·cm with a turnover frequency of 81.5 s in a 1 M KOH electrolyte. O-Ni-N-GC offered excellent stability during long-term operation for 140 h at 100 mA·cm, maintaining a FE > 99%. Mechanism studies revealed that the axial oxygen at the atomically dispersed nickel sites enhanced electron delocalization, with the graphitic N-rich porous carbon support lowering the CO-to-CO energy barrier and inducing a negative shift in the Ni-3d d-band center, effectively promoting the formation of the *COOH intermediate while weakening the adsorption of the *CO intermediate, thus optimizing the catalytic activity/selectivity to CO under practical conditions.
在低过电位和工业级电流密度下实现具有高CO法拉第效率(FE)的电催化CO到CO转化是非常理想的,但对于非贵金属催化剂来说是一个巨大的挑战。在此,合成了负载原子分散镍(具有轴向氧的NiN-O位点)的富氮石墨多孔碳(表示为O-Ni-N-GC),并将其用作CORR流动池中的阴极催化剂。O-Ni-N-GC在17至60 mV的低过电位下表现出优异的选择性,FE超过92%,在80 mV时超过99%。在200至900 mA·cm的工业级电流密度下,FE约为100%。令人印象深刻的是,在1 M KOH电解液中,O-Ni-N-GC在1 A·cm下的FE>96%,周转频率为81.5 s-1,达到了先进水平。O-Ni-N-GC在100 mA·cm下长期运行140 h期间表现出优异的稳定性,FE保持>99%。机理研究表明,原子分散镍位点处的轴向氧增强了电子离域,富氮石墨多孔碳载体降低了CO到CO的能垒,并使Ni-3d d带中心负移,有效促进了COOH中间体的形成,同时减弱了CO中间体的吸附,从而在实际条件下优化了对CO的催化活性/选择性。